Urban velocity fields

S. Angel, G. M. Hyman
Centre for Environmental Studies, 5 Cambridge Terrace, Regent's Park, London NW1, England
Received 15 January 1970

Abstract. The city is not an undifferentiated terrain and travel does not occur along straight-line paths at constant velocities. Variations in travel velocities at different locations bend the minimum time paths away from regions of high congestion. This paper discusses a transformation of the urban plane into a time surface on which distance corresponds to travel time, and describes the construction of minimum paths and isochrones for various velocity fields.

This view of the urban transportation system allows us to discover some of the important features which are often hidden in a network description of the system.

"One man's crooked lines are another man's geodesics" (William Warntz).

1 Urban space as a velocity field

The city is not an undifferentiated terrain and travel in the city does not occur along straight-line paths at constant velocities. Urban travel takes place in a dense network of roads and transit lines at varying speeds. Detours, wide deviations from straight-line paths, become the rule rather than the exception.

Recent urban models have rejected the earlier simplification of the city into a euclidean plane and have preferred a network of transportation links as the basic conceptual framework for the analysis of travel behaviour. The main disadvantage of these models is their complexity, which is partly a result of the sheer amount of information involved in characterising movement in the network. The important characteristics of the transportation system are thus hidden, and are difficult to grasp. The geometric properties of the city and its transport network are lost.

In order to regain an overview of travel in the city, in a context of an ever-changing transport network, we wish to retain the elegance of the earlier view of the city as a continuous terrain. We must, however, incorporate the higher quality of travel information used in modern transportation studies. If we retain the view of travel taking place on the plane, we must introduce some differentiation in the ease of travel on the plane. Such differentiation can easily be introduced as variations in travel velocities between locations on the plane.

In today's urban areas, transportation networks are sufficiently dense to admit the consideration of velocity at any location as an average velocity of travel on the network in the immediate area surrounding that location. This interpretation of urban transportation ignores variations in travel speeds in different directions, and stresses that velocity is mainly a function of position rather than of direction, and is thus a scalar measure. This view is particularly meaningful when velocity is taken as an average for large areas. Areas where travel is easy and efficient allow higher velocities, while areas with prevailing congestion or smaller traffic capacities only allow low travel speeds.

If this is a satisfactory characterisation of the transport network in cities then we can view urban travel as taking place in a continuous velocity field; that is a field in which the velocity does not vary appreciably between nearby points. This view of transportation recreates the possibility of a geometric characterisation of urban travel.
When velocities form a continuous scalar field, it is possible to transform the urban plane into a time surface (as described in Section 2). The time surface has the property that travel time between two points on the plane is identical with the distance between the images of these points on the time surface\(^{(1)}\).

This conception allows us to construct minimum paths and isochrones for different velocity fields. It also allows for the calculation of travel times between points, and consequently for calculations of measures of accessibility and market areas.

In this paper we restrict the analysis and the examples to radially symmetric velocity fields, where \(V = V(r) \) only, \(r \) being distance from the city centre. With further refinement the analysis could be extended to non-symmetric velocity fields \(V = V(r, \theta) \), and could also include fields in which the velocity varies with direction of travel. The present analysis implicitly restricts itself to surface travel. Incorporation of several transport modes still awaits further development.

We examine in detail four examples in which the velocity field is continuous, scalar, and radially symmetric. While three of the examples are hypothetical, the fourth has been empirically derived for the Greater Manchester urban area. For each example of a velocity field discussed below we later construct a time surface and families of minimum paths and isochrones, following the theoretical discussion in each section.

Example 1.1

We first examine the traditional assumption that travel proceeds with equal ease in all directions, and that time is always proportional to distance\(^{(2)}\). This form of travel takes place on a velocity field

\[
V = V_0
\]

where \(V \) is the velocity and \(V_0 \) is a constant.

Example 1.2

We assume that the central velocity is 0, and that velocity then increases proportionally to the distance \(r \) from the centre. This is a first approximation to the velocity field created by the phenomena of congestion in central areas and improvement of travel facilities in the periphery. The velocity field takes the form of a cone

\[
V = \omega r
\]

where \(r \) measures distance from the city centre and \(\omega \) is a constant.

Example 1.3

We assume that the central velocity is finite, but that velocities increase as the square of the distance from the centre. The velocity field then takes the form of a paraboloid

\[
V = ar^2 + b
\]

where \(a \) and \(b \) are constants.

Example 1.4

The fourth example was derived from an empirical measurement of velocity variations in the Greater Manchester urban area.

We examined a 10% sample of velocities on the existing network utilised by the SELNEC Transportation Study\(^{(3)}\). The velocity at various radii was averaged from a

\[(1) \text{ This idea is suggested by Warntz (1967, pp.7-8).} \]
\[(2) \text{ This assumption is used by Lösch (1967, for instance p.97), by Alonso (1965, p.18), and others.} \]
\[(3) \text{ Data were obtained by SELNEC (South East Lancashire/North East Cheshire) Transportation Study. In the measurement of distances from the centre, we used a map of the road network used by SELNEC. Speeds were computed from SELNEC 1965 HO(UPD4) Control Cost network.} \]

![Figure 1. Average travel times against distance](image_url)
sample drawn randomly with respect to direction. These averages were then graphed against distance from the centre. This is illustrated in Figure 1.

![Graph showing average velocity as a function of distance from central Manchester, 1965.](image)

Figure 1. Average velocity as a function of distance from central Manchester, 1965: $V = 24.9 - 16.9e^{-0.56r}$.

A satisfactory continuous approximation for these points was obtained by choosing the appropriate parameters for the velocity field

$$V = a - be^{-cr}$$

(4)

to obtain

$$V = 24.9 - 16.9e^{-0.56r}$$

(5)

where r is measured in miles and V in miles per hour.

Significant deviations from the curve, particularly those at 3 and 6 miles from the centre, are due to congestion in the two rings of dense settlement outside Manchester: Urmston–Sale–Stockport and Bolton–Bury–Rochdale–Oldham. Average velocities seem to rise sharply away from the centre and then to even out as the distance from the centre increases beyond 8 miles.

2 Time surfaces for scalar velocity fields

We assume a continuous, scalar, and radially symmetric velocity field $V = V(r)$ over the plane. We now wish to construct a time surface which has the property that travel time on the plane corresponds to distance on the time surface. It will be shown later that minimum time paths on the plane correspond to geodesics on the time surface.

The above requirement may be expressed in the form

$$\Delta t = \frac{\Delta s}{V}$$

(6)

where Δt is an element of distance on the time surface, and Δs is an element of distance on the plane.

An element of distance on the plane is, in polar coordinates (r, θ),

$$\Delta s = (\Delta r^2 + r^2 \Delta \theta^2)^{1/2},$$

(7)
and an element of distance on the time surface is, in cylindrical coordinates \((\rho, z, \phi)\),
\[
\Delta t = (\Delta \rho^2 + \Delta z^2 + \rho^2 \Delta \phi^2)^{1/2}.
\] (8)
These coordinate systems are illustrated in Figure 2.

![Figure 2](image)

Figure 2. The coordinate system \((r, \theta)\) of the urban plane (a), and the coordinate system \((\rho, z, \phi)\) of the time surface (b).

We define
\[
\theta = \phi.
\] (9)

We have, from Equations (6), (7), and (8),
\[
\Delta \rho^2 + \Delta z^2 + \rho^2 \Delta \phi^2 = \frac{\Delta \rho^2 + r^2 \Delta \theta^2}{V^2}.
\] (10)

For movement in which \(\theta\) is fixed, \(\Delta \theta = \Delta \phi = 0\), and we obtain
\[
\Delta \rho^2 + \Delta z^2 = \frac{\Delta \rho^2}{V^2}.
\] (11)

For movement in which \(r\) is fixed, \(\Delta r = 0\), and
\[
\rho^2 \Delta \phi^2 = \frac{r^2 \Delta \theta^2}{V^2}
\] (12)
so, by Equation (9),
\[
\rho = \frac{r}{V}.
\] (13)

If we divide Equation (11) by \(\Delta r^2\) and take its limit as \(\Delta r \to 0\), we obtain
\[
\left(\frac{dp}{dr}\right)^2 + \left(\frac{dz}{dr}\right)^2 = \frac{1}{V^2}.
\] (14)
From Equations (13) and (14) we obtain
\[
\frac{dz}{dr} = \frac{1}{V^2} \left[2rV \left(\frac{dV}{dr} \right) - r^2 \left(\frac{dV}{dr} \right)^2 \right]^{1/2}.
\] (15)

Integrating Equation (15) yields a constant of integration. For any given constant of integration we obtain from Equations (9), (13), and (15) a transformation:
\[
T_V: \ (r, \theta) \rightarrow (\rho, z, \phi).
\] (16)

As \(r \) and \(\theta \) vary over the urban plane the transformation \(T_V \) defines a parametric representation of a surface, the travel time surface. This transformation maps travel times between nearby points on the plane to distances on the time surface, as can be verified from Equation (10).

The transformation \(T_V \) is conformal, that is it preserves angles between curves, wherever the time surface is locally euclidean. A small triangle on the plane, with edges \(\Delta s_1, \Delta s_2, \) and \(\Delta s_3, \) is mapped by the transformation \(T_V \) into a small triangle on the time surface with edges \(\Delta t_1, \Delta t_2, \) and \(\Delta t_3. \)

By Equation (6) we have
\[
\frac{\Delta t_1}{\Delta s_1} = \frac{\Delta t_2}{\Delta s_2} = \frac{\Delta t_3}{\Delta s_3} = V.
\] (17)

The two triangles are similar and hence the corresponding angles are equal.

A real time surface exists only as long as the discriminant of Equation (15) is non-negative, and \(V \neq 0 \) for \(0 < r < \infty. \) This is identical with the requirement that
\[
0 \leq \frac{dV}{dr} \leq \frac{2V}{r} \text{ for } 0 < r < \infty.
\] (18)

When strict inequalities are satisfied \(dz/dr \) has a fixed sign, \(z \) is a monotonic function of \(r, \) and hence the transformation \(T_V \) is one-to-one.

We now derive time surfaces for the velocity fields presented as examples in Section 1. Since these examples involve radially symmetric velocity fields their time surfaces also must possess radial symmetry. We can therefore characterise these surfaces by a cross-sectional curve in any \((\rho, z)\) plane.

Example 2.1

\(V(r) = V_0, \) where \(V_0 \) is a constant.

Here \(dV/dr = 0, \) so from Equation (15) we obtain
\[
z = z_0
\] (19)

where \(z_0 \) is a constant. Thus the time surface is a plane and the transformation becomes the scale transformation:
\[
\rho = \frac{r}{V_0}.
\] (20)

Example 2.2

\(V(r) = \omega r, \) where \(\omega \) is a constant.

From Equation (13) we obtain
\[
\rho = \frac{1}{\omega}.
\] (21)

Equation (15) takes the form
\[
\frac{dz}{dr} = \frac{1}{\omega^2 r^2 (2\omega^2 r^2 - r^2 \omega^2)^{1/2}} = \frac{1}{\omega r}.
\] (22)
and so we obtain
\[z = \frac{1}{\omega} \ln \frac{r}{r_0}, \quad (23) \]
where \(r_0 \) is the radius corresponding to \(z = 0 \). The time surface is a cylinder of radius \(1/\omega \) which extends over the complete \(z \) axis, \(z = -\infty \) corresponding to \(r = 0 \), and \(z = +\infty \) to \(r = \infty \). For this surface any journey passing through the origin takes an infinite time.

Example 2.3

\[V(r) = ar^2 + b, \]
where \(a \) and \(b \) are constants.

We show that the time surface is a sphere of radius \(1/\omega \) where
\[\omega^2 = 4ab. \quad (24) \]

From Equation (13) we have
\[\frac{dp}{dr} = \frac{(1 - \rho \frac{dV}{dr})^2}{V}. \quad (25) \]

When \(V = ar^2 + b \) and \(\omega^2 = 4ab \), we obtain
\[V^2 \left(\frac{dp}{dr} \right)^2 = (1 - 2arp)^2 = 1 - \rho^2 \omega^2. \quad (26) \]

Using Equation (14) we can write
\[\left(\frac{dp}{dr} \right)^2 + \left(\frac{dz}{dr} \right)^2 = \frac{1}{1 - \rho^2 \omega^2}. \quad (27) \]

Simplifying this equation we can obtain a differential equation in \(z \) and \(\rho \)
\[\frac{dz}{d\rho} = \rho \left(\frac{1}{\omega^2} - \rho^2 \right)^{1/2}. \quad (28) \]

The solution of this differential equation is
\[(z - c)^2 + \rho^2 = \frac{1}{\omega^2}, \quad (29) \]
which is the equation of a sphere of radius \(1/\omega \), where \(c \) is an arbitrary constant.

If we select \(c = 1/\omega \) the sphere passes through \(\rho = 0, z = 0 \). This sphere then satisfies
\[\left(z - \frac{1}{\omega} \right)^2 + \rho^2 = \frac{1}{\omega^2}. \quad (30) \]

Applying Equation (13) we obtain
\[\rho = \frac{r}{ar^2 + b}. \quad (31) \]

Solving Equation (30) for \(z \), and substituting the above result for \(\rho \), we obtain
\[z = \frac{2ar^2}{\omega(ar^2 + b)}. \quad (32) \]

Example 2.4

\[V(r) = a - be^{-kr}, \]
where \(a, b, \) and \(c \) are constants.

In this example we illustrate the derivation of a time surface for which an algebraic equation is difficult to obtain. From Equation (13) we can obtain \(\rho \) as a function
of \(r \):
\[
\rho = \frac{r}{a - be^{cr}}.
\]
(33)

From Equation (15) we obtain \(dz/dr \) as a function of \(r \). Given \(a, b, \) and \(c \) we can compute \(z = z(r) \) by measuring the areas under the curve \(dz/dr \). Since this curve approaches the \(r \) axis more rapidly than any power of \(r \), as \(r \) approaches infinity, the values of \(z \) obtained are bounded above. The time surface thus possesses an asymptotic plane at the supremum of the \(z \) values. For each \(r \) the above procedure produces a value for \(\rho \) and a corresponding value for \(z \), giving us the cross-sectional curve of the time surface.

The cross-sectional curve of the time surface for the Greater Manchester velocity field thus takes the form illustrated in Figure 3.

At large distances from the centre the time surface approaches that of the plane of Example 2.1. As we approach the congested areas of central Manchester, road speeds become lower and the time surface is progressively distorted.

![Figure 3. The time surface for Greater Manchester, 1965.](image)

3 Minimum paths and isochrones
To avoid ambiguity, we first define the terms used in this section. The path between two points on the plane which can be travelled in the smallest time is said to be the minimum path. The shortest path between two points on the time surface is the geodesic. A set of points on the plane which can just be reached in a given time from a fixed point is an isochrone. A set of points on the time surface at a given distance from a fixed point is an isometric. Under the transformation \(T_V \), minimum paths map, in a one-to-one manner, on to geodesics, as can be seen from the following set of identities:
\[
\int_A^B \frac{dz}{V} = \int_A^B \left[r^2 + \left(\frac{dr}{d\theta} \right)^2 \right]^{\frac{1}{2}} d\theta = \int_{T_V(l)}^{T_V([l])} \left[\rho^2 + \left(\frac{d\rho}{d\phi} \right)^2 \right]^{\frac{1}{2}} d\phi = \int_{T_V(l)}^{T_V([l])} dt.
\]
(34)

The set of isochrones of a given point on the plane is the orthogonal family to the set of minimum paths through the point. Similarly the isometrics are the orthogonal family to the set of geodesics through the corresponding point on the time surface. Since the transformation \(T_V \) is conformal the isochrones map in a one-to-one manner on to isometrics.

In most cases where \(V = V(r) \) is given it is easier to find the geodesic on the time surface and then to obtain the equation for the travel path on the plane. In the general case, however, it appears simpler to solve the variational problem of minimising the
integral (34), written in the form
\[\int_{A}^{B} F \left(r, \frac{dr}{d\theta} \right) d\theta, \]
(35)
where
\[F \left(r, \frac{dr}{d\theta} \right) = \frac{1}{V} \left[r^2 + \left(\frac{dr}{d\theta} \right)^2 \right]^{\frac{1}{2}}. \]
(36)
The solution to this variational problem must satisfy Euler's differential equation \(^{(4)}\)
\[\frac{d}{d\theta} \left(\frac{\partial F}{\partial r'} \right) = \frac{\partial F}{\partial r}, \]
(37)
where \(r' = \frac{dr}{d\theta} \). Since \(F \) does not involve \(\theta \), we observe that
\[\frac{d}{d\theta} \left(F - r' \frac{\partial F}{\partial r'} \right) = r' \frac{\partial F}{\partial r} + r'' \frac{\partial F}{\partial r'} - r' \frac{d}{d\theta} \left(\frac{\partial F}{\partial r'} \right) \] \[= r' \left[\frac{\partial F}{\partial r} - \frac{d}{d\theta} \left(\frac{\partial F}{\partial r'} \right) \right]. \]
(38)
The above expression vanishes by Equation (37), so we can simplify Euler's equation (Courant and Hilbert, 1953, p.206) to the form
\[F - r' \frac{\partial F}{\partial r'} = K, \]
(39)
where \(K \) is a constant of integration.

If we substitute from Equation (36) for \(F \), and rewrite \(r' \) as \(\frac{dr}{d\theta} \), we obtain the differential equation of the minimum paths
\[\frac{dr}{d\theta} = \frac{r}{KV} \left(r^2 - K^2 V^2 \right)^{\frac{1}{2}}. \]
(40)
This differential equation, when solved for a given \(V \), yields a second constant of integration. Both constants can be evaluated by requiring that the minimum path passes through the points \(A \) and \(B \). If we allow the point \(B \) to vary we can write the family of minimum paths through \(A \), \((r_0, \theta_0)\), in the form
\[g(r_0, \theta_0, r, \theta, K) = 0 \]
(41)
where \((r_0, \theta_0)\) are the coordinates of the given point and \(K \) is the parameter characterising the family of minimum paths.

To obtain the family of isochrones of a given point we must find the orthogonal family to the family of Equation (41). We first find the differential equation that Equation (41) satisfies, eliminating the parameter \(K \) in the process (see Example 3.2 below)\(^{(5)}\),
\[h \left(r_0, \theta_0, r, \theta, \frac{d\theta}{dr} \right) = 0. \]
(42)
We then replace \(\frac{d\theta}{dr} \) in Equation (42) by \(- \frac{1}{r} \frac{dr}{d\theta}\) to obtain
\[h \left(r_0, \theta_0, r, \theta, \frac{-1}{r} \frac{dr}{d\theta} \right) = 0. \]
(43)
Equation (43) is the differential equation of the family of isochrones of a given point.

\(^{(4)}\) The conditions for the existence of the minimum are discussed and presented in Courant and Hilbert (1953, p.184).

\(^{(5)}\) This procedure is discussed in Protter and Morrey (1964, p.659).
We now derive minimum paths and isochrones for each of the examples mentioned earlier. First observe that the minimum paths from the city centre are straight lines for all radially symmetric velocity fields. In this case we can write the integral of Equation (34) in the form
\[
\int_0^{r_1} \frac{1}{V} \left[1 + r^2 \left(\frac{d\theta}{dr} \right)^2 \right]^{1/2} dr
\]
(44)
for a path \(r = r(\theta) \) between the centre and a point \((r_1, \theta_1)\). For a radial path from the centre to \((r_1, \theta_1)\) we have
\[
\frac{d\theta}{dr} = 0.
\]
(45)
The time along that path is
\[
\int_0^{r_1} \frac{dr}{V}
\]
(46)
and, since
\[
\left[1 + r^2 \left(\frac{d\theta}{dr} \right)^2 \right]^{1/2} \geq 1,
\]
(47)
the value of the integral in Equation (44) must always exceed the value of the integral in Equation (46). Hence the minimum paths from the centre are radial paths. The orthogonal family to the family of radial paths is the family of concentric circles. The figures shown below illustrate the family of minimum paths and the family of isochrones for a location east of the city centre.

Example 3.1
\(V(r) = V_0 \), where \(V_0 \) is a constant.

From Example 2.1 the time surface is a plane so the geodesics are straight lines and the isometrics are circles. The transformation is a scale transformation, so the minimum paths are straight lines and the isochrones are circles. This example is illustrated in Figure 4.

![Figure 4. Minimum paths (a) and isochrones (b) for the velocity field \(V = V_0 \).](image-url)
Example 3.2

\(V(r) = \omega r \), where \(\omega \) is a constant.

In this example we follow the procedure described at the beginning of this section. To find the minimum paths we substitute \(V = \omega r \) in Equation (40) to obtain

\[\frac{dr}{d\theta} = mr, \quad (48) \]

where

\[m = \frac{(1-K^2 \omega^2)^{\frac{1}{2}}}{K \omega}. \]

If we impose the initial condition that the minimum paths pass through \(\theta = 0 \) at \(r = r_0 \), then the solutions to Equation (48) can be written as

\[r = r_0 e^{m\theta}. \quad (49) \]

This is the equation of a spiral which cuts each radius at a constant angle. For \(m = 0 \) we obtain a minimum path which is the circle \(r = r_0 \).

To find the isochrones of \((r_0, 0)\) we write Equation (49) in the form

\[m = \frac{\ln r - \ln r_0}{\theta}, \quad (50) \]

and differentiate both sides with respect to \(r \), yielding

\[\theta = r \frac{d\theta}{dr} \ln \frac{r}{r_0}. \quad (51) \]

We replace the term \(r \frac{d\theta}{dr} \) by \(\frac{1}{r} \frac{dr}{d\theta} \) to obtain

\[\theta = -\frac{1}{r} \frac{dr}{d\theta} \ln \frac{r}{r_0}, \quad (52) \]

which integrates to give

\[C - \theta^2 = \left(\ln \frac{r}{r_0}\right)^2, \quad (53) \]

where \(C \) is a constant of integration. Each value of \(C \) specifies one isochrone from the family. If we consider movement along the minimum path \(r = r_0 \), each isochrone in the above family is met when \(\theta^2 = C \), and at a time \(t = r_0 C^{\frac{1}{2}}/\omega r_0 \).

So the parameter \(C \) can be replaced by \(\omega^2 t \) and the family of isochrones written

\[r_0 e^{\omega^2 t - \theta^2}. \quad (54) \]

We can now express the travel time between the point \((r_0, 0)\) and any other point \((r, \theta)\) by solving the above equation for \(t \):

\[t = \frac{1}{\omega} \left(\theta^2 + \ln \frac{r}{r_0} \right)^{\frac{1}{2}}. \quad (55) \]

We can recover the geodesics by using the transformation of Equation (23) in Equation (49) to obtain

\[z = \frac{m\theta}{\omega}, \quad (56) \]

which is a helix.

One can intuitively see that geodesics are helixes by opening the cylinder along a generator to form a plane, where the above equation represents a straight line. The
isometrics have the equation
\[z^2 + \left(\frac{\theta}{\omega}\right)^2 = r^2, \] (57)
which are closed curves if \(t < \pi/\omega \), a self-intersecting curve at \(t = \pi/\omega \), and a pair of curves for \(t > \pi/\omega \).

The family of spiral minimum paths, and the family of isochrones for a point east of the city centre are illustrated in Figure 5. The isochrones have been drawn at equal time intervals, except the last one which is the isochrone reached at \(t = \pi/\omega \).

![Figure 5. Minimum paths (a) and isochrones (b) for the velocity field \(V = \omega r \).](image)

Example 3.3

\(V = ar^2 + b \), where \(a \) and \(b \) are constants.

In this example the construction of minimum paths and isochrones is greatly simplified by the observation that we can represent the transformation \(T_V \) as a stereographic projection. If we multiply the variables \((\rho, z)\) of the time-sphere by the central velocity \(b \), we obtain from Equation (30)
\[
\left(b z - \frac{b}{\omega} \right)^2 + (b \rho)^2 = \left(\frac{b}{\omega} \right)^2 .
\] (58)

This is the equation of a sphere in urban space of radius \(b/\omega \), tangent to the urban plane at the city centre. The transformation moves corresponding points along the line which joins them to the north pole. Figure 6 illustrates the stereographic projection of the sphere in urban space.

To verify that \(T_V \) is a stereographic projection we must show that
\[
\frac{r}{b \rho} = \frac{2b}{\omega \left(\frac{2b}{\omega} - b z \right)} .
\] (59)

From Equation (32) we have
\[
\frac{2}{\omega} - z = \frac{2b}{\omega (ar^2 + b)} = \frac{2b}{\omega V} ,
\] (60)
so that both sides of Equation (59) equal \(V/b \).
The geodesics on the spherical time surface are great circles. The family of great circles through a given point also passes through its antipodal point. Under a stereographic projection circles are transformed into circles\(^6\). So the minimum paths through a point on the plane are circles which also pass through another fixed point. This is a coaxial system of circles, one member of which is the straight line joining the two points and passing through the city centre. This line is the stereographic image of the great circle passing through the two antipodal points on the sphere and the south pole.

Figure 6. Stereographic projection of the sphere in urban space.

\[b \]
\[\cap \]
\[b \]
\[\cap \]
\[b_p \]
\[r \]
\[N \]

Figure 7. Minimum paths (a) and isochrones (b) for the velocity field \(V = ar^2 + b \).

- On the time-sphere the family of isometrics of a given point is a set of circles whose centres lie on the line connecting the point and its antipode. Again, under a stereographic projection this family of circles maps into a family of circles on the plane. Since the isochrones are the orthogonal trajectories of the minimum paths, this family is the circles passing the perpendicular stereographic image of the north pole.

Figure 7 shows isochrones for our

Example 3.4

\[V(r) = 24 \cdot 9 - 16 \cdot 1 \]

In this example minimum paths a at each point on an interval \(\Delta t \) we improve if the original point. The

\[\text{(6) The proof of this result appears in Hilbert and Cohn-Vossen (1952, p.250).} \]

4 Conclusion

The concept of urban spatial structure allows us to identify urban areas. Through the

\[\text{(7) This construction Huygens, 1912).} \]
this family is the unique family of circles which is orthogonal to the family of coaxial
circles passing through the two fixed points.

It is easy to see that this family is the family of coaxial circles whose distances
from the two points have a fixed ratio. The family includes a straight line which is
the perpendicular bisector of the line joining these two points. This line is the
stereographic image of the isometric small circle on the sphere which passes through
the north pole.

Figure 7 shows the coaxial families of circles which form the minimum paths and
isochrones for our given point, east of the city centre.

Example 3.4

\[V(r) = 24 \cdot 9 - 16 \cdot 8e^{-0.5r} \]

In this example we make no use of the time surface for the construction of
minimum paths and isochrones. Instead we use Huygens' construction and treat
each point on an isochrone as the origin of a new trip. To construct isochrones at
an interval \(\Delta t \) we first draw a small circle of radius \(V\Delta t \) from the original point on
the urban plane. If we regard this as the first isochrone, we then set a compass on
each point of this circle to have the appropriate radius \(V\Delta t \) and construct a series of
arcs. The envelope of these arcs defines the next isochrone. By repeated application
of this method the set of isochrones of the original point is constructed. The minimum
paths can now be approximated by drawing straight line segments from a point on
one isochrone to the nearest point on the next isochrone. The accuracy of this method
is improved if the minimum paths are drawn in the reverse direction, towards the
original point. This is illustrated in Figure 8.

\[\text{Figure 8. Minimum paths (a) and isochrones (b) for a point 2·5 miles from the centre of Manchester, 1965.} \]

4 Conclusion

The concept of urban velocity fields should be seen as a component in the analysis of
urban spatial structure. Incorporation of velocity variations as distortions of urban
space allows us to reintroduce geometry into the search for spatial regularities in urban
areas. Through the development of modern transportation facilities, and through the

\((7)\) This construction was described by Huygens in 1678 to determine the wavefronts of light (see
Huygens, 1912).
massive growth of private automobile ownership, the velocity field of the city is constantly being deformed. It seems that these deformations move the urban velocity field away from the simple plane, creating new wrinkles in urban space, rather than flattening it out.

Present road developments usually favour peripheral improvements, and congestion levels in central areas are either remaining constant or becoming worse. Both developments are likely to increase the variations in velocities between centre and periphery, thus creating more distinct and varied velocity fields. A forthcoming paper in this journal will suggest a way of tracing the effect of particular changes in the transportation system on the urban velocity field, and consequently on accessibility, location, rent, and residential densities.

If the velocity field of a given city can be sufficiently well defined, it could prove to be a valuable indicator of the performance of the transportation system, and of the equity in the spatial distribution of transport improvements. Used in such a manner, the concept of urban velocity fields responds to the increasing need among the transportation system on the urban velocity field, and consequently on accessibility, location, rent, and residential densities.

References