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Abstract. The city is not an undifferentiated terrain and travel does not occur along straight-line 
paths at constant velocities. Variations in travel velocit ies at different locations bend the minimum 
time paths away from regions of high congestion. This paper discu sses a transformation of the urban 
plane into a time surface on which distance corresponds to travel time, and describes the construction 
of minimum paths and isochrones for various velocity fields. 

This view of the urban transportation system allows us to discover some of the important features 
which are often hidden in a   description of the system. 

"One man's crooked lines are another man's geodesics" (William Wamtz).ess , 
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1 Urban space as a velocity field 
The city is not an undifferentiated terrain and travel in the city does not occur along 
straight-line paths at constant velocities . Urban travel takes place in a dense network 
of roads and transit lines at varying speeds. Detours, wide deviations from straight-
line paths, become the rule rather than the exception. 

Recent urban models have rejected the earlier simplification of the city into a 
euclidean plane and have preferred a network of transportation links as the basic 
conceptual framework for the analysis of travel behaviour. The main disadvantage 
of these models is their complexity, which is partly a result of the sheer amount of 
information involved in characterising movement in the network. The important 
characteristics of the transportation system are thus hidden, and are difficult to grasp. 
The geometric properties of the 'ci ty and its transport network are lost. 

In order to regain an overview of travel in the city, in a contex t of an ever-changing 
transport network, we wish to retain th e elegance of the earlier view of the city as a 
continuous terrain. We must, however, incorporate the higher quality of travel 
information used in modem transportation studies. If we retain the view of travel 
taking place on the plane, we must introduce some differentiation in the ease of 
travel on the plane. Such differentiation can easily be introduced as variations in 
travel velocities between locations on the plane. . 

In today's urban areas, transportation networks are sufficiently dense to admit the 
consideration of velocity at any location as an average velocity of travel on the network 
in the immediate area surrounding that location. This interpretation of urban 
transportation ignores variations in travel speeds in different directions, and stresses 
that velocity is mainly a function of position rather than of direction, and is thus a 
scalar measure. This view is particularly meaningful when velocity is taken as an 
average for large areas. Areas where travel is easy and efficient allow higher velocities, 
while areas with prevailing congestion or smaller traffic capacities only allow low 
travel speeds. ' 

If this is a satisfactory characterisation of the transport network in cities then we 
can view urban travel as taking place in a continuous velocity field; that is a field 
in which the velocity does not vary appreciably between nearby points. This view of 
transportation recreates the possibility of a geometric characterisation of urban travel.It Bri tain 
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When velocities form a continuous scalar field, it is possible to transform the urban 
plane into a time surface (as described in Section 2). The time surfac e has the 
property that travel time betw een two points on the plane is identical with the distan ce 
between the images of these poin ts on the time surfa ce' !'. 

This conception allows us to construc t minimum path s and isochrones for different 
velocity fields. It also allows for the calculation of travel times between points, and 
consequently for calculations of measures of accessibility and market areas. 

In this paper we restrict the analysis and the examples to radially sy mme tric 
velocity fields, where V = VCr ) only, r being distan ce from the ci ty centre, With 
furth er refinem ent the analysis could be extended to non-symm etric velocity fields 
V = VCr, 0) , and could also include fields in which the velocity varies with direction 
of travel. The present analysis implic itly restricts itselfto surface travel. Incorporation 
of several transport modes still awaits further development. 

We examine in detail four examples in which the velocity field is continuous, scalar, 
and radially symmetric. While three of the examples are hypothetical, the fourth has 
been empirically derived for the Greater Manchester urban area. For each example 
of a velocity field discussed below we later constru ct a time surface and families of 
minimum paths and isochrones, following the theoretical discussion in each section. 

Example 1.1 
We first examine the trad itional assumption tha t travel proceeds with equal ease in 
all directions, and that time is always proporti onal to distan ce!". This form of travel 
takes place on a velocity field 

V = V ( I ) o 

where V is the velocity and Vo is a constant. 

Example 1.2 
We assume that the central velocity is 0, and that velocity then increases proportionally 
to the distance r from the centre. Th is is a first approximation to the velocity field 
created by the phenomena of congestion in central areas and improvement of travel 
facilities in the periphery . The velocity field takes the form of a cone: 

V = wr (2) 

where r measures distance from the city centre and w is a constant. 

Example 1.3 
We assume that the central velocity is finite, but that velocities increase as the square 
of the distan ce from the centre. The velocity field then takes the form of a 
paraboloid 

V =ar"2 +b (3 ) 

where a and b are constants. 

Example 1.4 
The four th example was derived from an empirical measurement of velocity variat ions 
in the Greater Manchester urban area. 

We examined a 10% sample of velocities on the existing netw ork utilised by the 
SELNEC Transportation Stud y (3). Th e velocity at variou s radii was averaged from a 

(1) This idea is suggested by Warntz (I 967 , pp .7 -8) .  
("2) This assumption is used by LOsch (1967 , for instance p.97), by Alonso (1965 , p .18), and others .  
(3) Data were obtained from SELNEC (South East Lancashire/North East Cheshire) Transportation  
Study. In the measurement of distance s from the centre, we used a map of the road network used  
by SELNEC. Speeds were computed from SELNEC 1965 HO(UPD4) Control Cost .network.  
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sample dr awn randomly with respect to direction . These averages were then graphed 
against distance from the centre. This is illustrated in Figure I . 
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Figure I. Average velocity as a function of distance from central Manchester, 1965: 
V = 24 ·9-16·ge-o,s 6 r . 

A satisfactory continuous approximation for these points was obtained by choosing 
the appropriate parameters for the -velocity field 

V = a - be-cr (4) 

to obtain 

V= 24·9-16 ·ge- o , s 6r (5) 
where r is measured in miles and V in miles per hour. 

Significant deviations from the curve, particularly those at 3 and 6 mil es from the 
centre, are due to congestion in the two rings of dense settlement outside Manchester: 
Urmston -Sale-Stockport and Bolton - Bury - Rochdale-Oldham. Average velocities 
seem to rise sharply away from the centre and then to even ou t as the distance from 
the centre increases beyond 8 miles. 

2 Time surfaces for scalar velocity fields _ 
We assume a continuous, scalar, and radially symmetric velocity field V = VCr) over 
the plane. We now wish to construct a time surface which has the property that 
travel time on the plane corresponds to distance on the time surface. It will be 
shown later that minimum time paths on the plane correspond to geodesics on the 
time surface. 

The above requirement may be expressed in the form 

t:.s 
At = V (6) 

where At is an element of distance on the time surface, and t:.s is an element of 
distance on the plane. 

An element of distance on the plane is, in polar coordinates (r, 8), 
2A8 2 )Y>t:.s = (Ar2 +r , (7) 
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and an element of distance on the time surface is, in cylindrical coordinates 
(p,z,¢), 

At ::= (Ap 2+ &2+ p2A¢2) Y' . (8) 

These coordinate systems are illustrated in Figure 2. 

.0 .::J¢ 

-- b,'S- --
 

0=0 1/>=0
(a) (b) 

Figure 2. The coordinate system (r,O) of the urban plane (a), and the coordinate system (p , Z, 1/» 
of the time surface (b) . 

We define 

() ::= ¢. (9) 

We have, from Equations (6) , (7), and (8), 

Ar2 r2Ae 2 
Ap2+Az 2+p2A.h2 = -+-- (10)'I' V2 V2 

For movement in which e is fixed, Ae =A¢ = 0, and we obtain 
A,2 

Ap2+ Az2 ::= J!2 . ( 11) 

For movement in which r is fixed, t::..r ::= 0, and 
2r

p2A¢2::= -2 Ae 2 (12)V 

so , by Equation (9), 

r 
p = V . (13) 

If we divide Equation (11) by Ar 2 and take its limit as Ar -+ 0, we obtain 

dP)2 (dZ)2 __1 ( 14) ( dr + dr - V 2 . 
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From Equations (13) and (14) we obtain 

dz = _I [ r(dV)_ 2(dV)2J'h ( 15)dr V 2 2r l- dr r dr . 

Integrating Equation (15) yields a constant of integration. For any given constant of 
integration we obtain from Equations (9), (13), and (15) a transformation : 

Tv: (r, 8) ..... (p , z, ¢). (16) 

As rand 8 vary over the urban plane the transformation T v defines a parametric 
representation of a surface, the travel time surface. This transformation maps travel 
times between nearby poin ts on the plane to distances on the time surface, as can be 
verified from Equation (10). 

The transformation Tv is conformal , that is it preserves angles between curves, 
wherever the time surface is locally euclidean. A small triangle on the plane, with 
edges &\, &2 ' and &3' is mapped by the transformation T v into a small triangle on 
the time surface with edges !:,t 1 , At2, and !:,t 3 ' 

By Equation (6) we have 

!:,t 1 !:,t 2 !:,t 3 I 
( 17)&1 = &2 = !:,S3 = V . 

The two triangles are similar and hence the corresponding angles are equal. 
A real time surface exists only as long as the discriminant of Equation (15) is non-

negative, and V -=1= 0 for 0 < r < 00 . This is identical with the requirement that 

dV 2V o  -d  - for 0 < r < 00 • ( 18) r r 

When strict inequalities are satisfied dz/dr has a fixed sign, z is a monotonic function 
of r, and hence the transformation Tv is one-to-one. 

We now derive time surfaces for the velocity fields presented as examples in 
Section I. Since these examples involve radially symmetric velocity fields their time 
surfaces also must possess radial symmetry. We can therefore characterise these 
surfaces by a cross-sectional curve in any (p, z) plane. 

Example 2.1 
VCr) = Va, where Va is a constant. 

Here d V/dr = 0, so from Equation (15) we obtain 

z = za ( 19) 

where za is a constant. Thus the time surface is a plane and the transformation 
becomes the scale transformation : ; 

r 
(20)p = Va . 

Example 2.2 
VCr) = wr, where w is a constant. 

From Equation (13) we obtain 

1  
p = w .  (2 I) 

Equation (15) takes the form 

dz I I - = --2r2 (2r2w2-r2w 2 ( . = - (22)dr w wr ' 
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and so we obtain 

I r 
z = -In- (23)w r-.: 

where ro is the radius corresponding to z = O. The time surface is a cylinder of 
radius I/w which extends over the complete z axis, z = -00 corresponding to r = 0, 
and z = +00 to r = 00. For this surface any journey passing through the origin takes 
an infinite time. . 

Example 2.3 
V(r) = ar 2 +b, where a and b are constants.  
We show that the time surface is a sphere of radius I/w where  

w 2 = 4ab. (24) 

From Equation (13) we have 

 =  . (25) 

2When V = ar 2 +band w = 4ab, we obtain 

V 2( 
dP)2 dr = (1- 2arp)2 = 1- p2W2 (26) 

Using Equation (14) we can write 

dP)2 (dZ)2 (dP)2 (27)I  
( dr + dr = dr 1- p2W 2  

Simplifying this equation we can obtain a differential equation in z and p 

dz ( I )-\1'dp = P w 2 - p2 . (28) 

The solution of this differential equation is 

I 
(Z-C)2+ p2 = - (29)w 2 , 

which is the equation of a sphere of radius I/w, where c is an arbitrary constant. 
If we select c = I/w the sphere passes through p = 0, Z = O. This sphere then 
satisfies 

(
I )2 I z r: w + p2 = w 2 • (30) 

Applying Equation (13) we obtain 

r 
(31 )p = ar 2 + b . 

Solving Equation (30) for z, and substituting the above result for p, we obtain 

2ar2 
Z = w(ar2+ b) . (32) 

Example 2.4 
V(r) = a- be:", where a, b, and c are constants. 

In this example we illustrate the derivation of a time surface for which an algebraic 
equation is difficult to obtain. From Equation (13) we can obtain p as a function 
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From Equation (15) we obtain dz/dr as a function of r. Given a, b , and c we can 
compute z = z(r) by measuring the areas under the curve dz/dr. Since this curve 
approaches the r axis more rapidly than any power of r, as r approaches infinity, the 
values of z obtained are bounded above. The time surface thus possesses an asymptotic 
plane at the supremum of the z values. For each r the above procedure produces a 
value for p and a corresponding value for z, giving us the cross-sectional curve of the 
time surface. 

The cross-sectional curve of the time surface for the Greater Manchester velocity 
field thus takes the form illustrated in Figure 3. 

At large distances from the centre the time surface approaches that of the plane of 
Example 2.1. As we approach the congested areas of central Manchester, road speeds 
become lower and the time surface Is progressively distorted . 

20 

f IS ..s 
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N 

30 25 20 15 10 5 o 5 10 15 20 25 30 
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Figure 3 . The time surface for Greater Manchester , 1965 . 

3 Minimum paths and isochrones 
To avoid ambiguity, we first define the terms used in this section. The path between 
two points on the plane which can be travelled in the smallest time is said to be the 
minimum path . The shortest path between two points on the time surface is the 
geodesic . A set of points on the plane which can just be reached in a given time 
from a fixed point is an isochrone. A set .o f poin ts on the time surface at a given 
distance from a fixed point is an isometric. Under the transformation Tv, minimum 
paths map , in a one-to-one manner, 0"1 to geodesics, as can be seen from the following 
set of identities: . 

B Tl'illl 
dt .L   de = 1

, 

   
2 

+   = f 
TI'II1) 

(34) 

The set of isochrones of a given point on the plane is the orthogonal family to the 
set of minimum paths through the point. Similarly the isometrics are the orthogonal 
family to the set of geodesics through the corresponding point on the time surface. 
Since the transformation Tv is conformal the isochrones map in a one-to-one manner 
on to isometrics. 

In most cases where V = VCr) is given it is easier to find the geodesic on the time 
surface and then to obtain the equation for the travel path on the plane. In the general 
case, however, it appears simpler to solve the variational problem of minimising the 
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integral (34) , written in the form 

(35) 

where 

dr) I [ 2 (dr)2] Y: F (r, de = V r + de (36) 

The solution to this variational problem must satisfy Euler's differential equationv" 

d (OF) of (37)dO or' = -a;: , 
where r' = dr/dO. Since F does not involve e, we observe that 

d ( , OF) ,of of /I of ,[ d (OF)] ,[OF d (OF)]
dO F - r or' = r ar + r 

/I 

or' - r or' - r dO or' = r or -  or' (38) 

The above expression vanishes by Equation (37), so we can simplifyEuler's equation 
(Courant and Hilbert, 1953, p.206) to the form : 

,oF
F-r aI" = K , (39) 

where K is a constant of integration. 
If we substitute from Equation (36) for F, and rewrite r' as dr/de ; we obtain the 

differential equation of the minimum paths . 

dr r  
dO= KV(r2-K 2V2)'h . (40)  

This differential equation, when solved for a given V, yields a second constant of 
integration. Buth constants can be evaluated by requiring that the minimum path 
passes through the points A and B. If we allow the point B to vary 'we can write the 
family of minimum paths through A, (ro, 00 ) , in the form 

g(ro, 00 , r, 0, K) = 0 (41 ) 

where (ro, 00 ) are the coordinates of the given point and K is the parameter 
characterising the family of minimum paths. 

To obtain the family of isochrones of a given point we must find the orthogonal 
family to the family of Equation (41) . We first find the differential 'equ ation that 
Equation (41) satisfies, eliminating the parameter K in the process (see Example 3.2 
below)(5), ' 

h(ro, 00 , r, e. r  = 0 . (42) 

de 1 dr 
We then replace r dr in Equation (42) by ---;: de to obtain 

(43) 
, 

Equation (43) is the differential equation of the family of isochrones of a given point. 

(4) The conditions for the existence of the minimum are discussed and presented in Courant and 
Hilbert (1953, p.l84). . 
(5) This procedure is discussed in Protter and Morrey (1964. p.659) . 
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We now derive minimum paths and isochrones for each of the examples mentioned 
earlier. First observe that the minimum paths from the city centre are straight lines 
for all radially symmetric velocity fields. In this case we can write the integral of 
Equation (34) in the form 

I [ (d8)2J'/l' l - I +r2 - dr (44)o V drf
for a path r = r(8) between the centre and a point (r l , 8d. For a radial path from 
the centre to (r I' 81 ) we have 

d8 
(45)dr = 0 . 

The time along that path is 

f' l dr 
(46) 

o V 
and , since 

(47) 

the value of the integral in Equation (44) must always exceed the value of the integral 
in Equation (46). Hence the minimum paths from the centre are radial paths. The 
orthogonal family to the family of radial paths is the family of concentric circles. 

The figures shown below illustrate the family of minimum paths and the family of 
isochrones for a location east of the city centre. 

Example 3.1 
VCr) = Vo , where Vo is a constant. 

From Example 2.1 the time surface is a plane so the geodesics are straight lines 
and the isometrics are circles. the transformation is a scale transformation, so the 
minimum paths are straight lines and the isochrones are circles. This example is 
illustrated in Figure 4. 

(a) (b) 

Figure 4. Minimum paths (a) and isochrones (b) for the velocity field V = Va. 
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Examples.L  
V(r) = wr, where w is a constant.  

In this example we follow the procedure described at the beginning of this 
section. To find the minimum paths we substitute V = wr in Equation (40) to 
obtain 

dr  
d8 = mr, (48)  

where 
K 2w 2)'!'(I -

m = Kw 

If we impose the initial condition that the minimum paths pass through a= 0 at 
r = ro, then the solutions to Equation (48) can be written as . 

(49) 

This is the equa tion of a spiral which cu ts each radius a t a constan t angle . For 
m = 0 we obtain a minimum path which is the circle r = roo 

To find the isochrones of (ro, 0) we write Equation (49) in the form 

Inr-Inro  
m = 8  (50) 

and differentiate both sides with respect to r, yielding 

d8 r 
8 = r-In - . (51 ) 

dr ro 
d8 I dr 

We replace the term r dr by --,: d8 to obtain 

I dr r 
8 = ---In- (52)r d8 ro' 

which integrates to give 

C-8 2 =  , (53) 

where C is a constant of integration. Each value of C specifies one isochrone from 
the family . If we consider movement along the minimum path r = ro:, each 
isochrone in the above family is met when 8 2 = C, and at a time t = roC '!' /wr o' 

2So the parameter C can be replaced by w 2 / and the family of isochrones written 
 roe (54) 

We can now express the travel time between the point (ro, 0) and any other point 
(r, 8) by solving the above equation for I : 

I (   . (55)w ro 
We can recover the geodesics by using the transformation of Equation (23) in 
Equation (49) to obtain 

m8 
z=- (56) 

w ' 
which is a helix. I 

One can intuitively see that geodesics are helixes by opening the cylinder along a 
generator to form a plane, where the above equation represents a straight line. The 
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isometrics have the equ ation 

Z2+  = [2 , (57) 

which are closed curves if [ < 'rr/ w , a self-intersecting curve at [ = rr/w, and a pair of 
curves for [ > rr/w. 

The family of spiral minimum paths, and the family of isochrones for a point east 
of the city centre are illustr ated in Figure 5. The isochrones have been drawn at 
equal time intervals, except the last one wh ich is the isochrone reached at [ = rr/w. 

(a) (b) 

Figure S. Minimum paths (a) and iso:chrones (b) for the velocity field V = cor. 

Example 3.3  
V = ar? + b, where a and b are con stants.  

In this example the con struction of minimum paths and isochrones is greatly 
simplified by th e observation   we can represent the transformation T v <IS a 
stereographic projection. If we multiply the variables (p , z) of the time-sphere by 
the central velocity b, we obtain, from Equation (30) 

b)2 (b)2 .( bz - w + (bp )2 = W . ; (58) 

Thi s is the equation of a sphe re in urban space of radius b/w , tangent to the urban 
plane at the city centre. The transformation moves corresponding points along the 

I 
line which joins them to the north pole. . Figure 6 illustra tes the stereographic 
projection of the sphere in urban spa ce. 

To verify th at Tv is a stereographi c projection we must show th at 
I 

L. = 2b j(2b _ bZ) . I (59)bp w w 
From Equation (32) we have 
2 2b 2b 

(60)w - Z = w(ar2+b) = wV ' 

so that both side s of Equation (59) equal Vlb . 
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The geodesics on the spherical time surface are great circles. The family of grea t 
circles through a given point also passes through its antipodal point. Under a 
stereographic projection circles are transformed into circlesl'", So the minimum paths 
through a point on the plane are circles which also pass through another fixed point. 
This is a coaxial system of circles, one member of which is the straight lirie joining 
the two points and passing through the city centre . This line is the stereographic 
image of the great circle passing through the two antipodal points on the   and 
the south pole . I 

N 

r 

Figure 6. Stereographic projection of the sphere in urban space . 

(a) (b) 

Figure 7. Minimum paths (a) and isochrones (b) for the velocity field V = ar+ b. 

. On the time-sphere the family of isometrics of a given point is a set of circles 
whose centres lie on the line connecting the point and its antipode. Again; ' under a 
stereographic projection this family of circles maps into a family of circles on the 
plane. Since the isochrones are the orthogonal trajectories of the minimum!paths, 

(6) The proof of this result appears in Hilbert and Cohn-Vossen (1952, p.250) . 
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this family is the unique family or circles which is orthogonal to the family of coaxial 
circles passing through the two fixed points. 

It is easy to set that this family is the family of coaxial circles whose distances 
from the two points have a fixed ratio. The family includes a straight line which is 
the perpendicular bise ctor of the' line joining these two poin ts. This line is the 
stereographic image of the isometric small cir cle on the sphere which passes through 
the north pole. 

Figure 7 shows the coaxial families of circles which form the minimum paths and 
isochrones for our given poin t, east of the city cen tre . 

Example 3.4 
s6r VCr) = 24 ·9-l6· 8e-o, . 

In this example we make no use of the time sur face for the co nst ruc tio n of 
minimum paths and isochrones . .lnstead we use Huygens' constru ction (7) and treat 
each point on an isochrone as the origin of a new trip. To construct isochrones at 
an interval /:"t we fir st draw a small circ le of radius V/:"r from the original point on 
the urban plan e. If we regard this as the first iso chrone, we then se t a com pa ss on 
ea ch point of this circle to have the appropriate radius V/:"t and construct a series of 
arcs The envelope of these ar cs de fines the nex t iso chrone . By repea ted applica tion 
of this method the se t of isochrones of the original point is co ns t ruc ted . The minimum 
paths can now be appro xim ate d by drawing straight line segments from a point on 
one isochrone to the nearest po int on the next isochrone. The accuracy of this method 
is improved if the minimum paths are drawn in the reverse direction , towards the 
original point. This is illustrated in Figure 8. 

(a) (b) 
Figure 8. Minimum paths (a) and isochrones (b ) for a point 2·5 miles from the centre of Manchester, 
1965 . 

4 Conclusion 
The concept of urban velocity fields should be seen as a component in the analysis of 
urban spat ial structu re. Incorporation of velocity variations as di stortions of urban 
spac e allow s us to reintroduce geometry into the searc h for spatial regularities in urban 
areas. Through th e development of modern transportation facilities, and through the 

(7) This construction was described by Huygens in 1678 to determine the wavefronts of light ' (see 
Huygens, 1912). 
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massive growth of private au tomobile ownership, the velocity field of the city is  
constantly being deformed. It seems that these deformations move the urban velocity  
field away from the simple plane, creating new wrinkles in urban space, rather than  
flattening it ou t.  

Present road developments usually favour peripheral improvements, and congestion 
levels in central areas are either remaining constant or becoming worse. Both 
developments are likely to increase the variations in velocities between centre and 
periphery, thu s creating more distinct and varied velocity fields . A forthcoming 
paper in this journal will suggest a way of tracing the effect of particular changes in 
the transportation system on the urban velo city field, and consequently on accessibility, 
location, rent, and resid ential densities. 

If the velocity field of a given city can be sufficiently well defined, it could prove 
to be a valuable indicator of the performance of the transportation system , and of 
the equity in the spatial distribution of transport improvements. Used 'in such a 
manner, the concep t of urban velo city field s responds to the increasingneed among 
the transportation system on the urb an velocity field, and consequently on accessibility, 
location, rent, and residential densities. ' 
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