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Urban spatial interaction

S Angel, G M Hyman
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Abstract. This paper centres on the development of a geometrical representation of movement and
spatial interaction in urban areas, as distinct from the network representation commonly used in
modern studies. All quantities are treated as distributions over geographic space, rather than
concentrations at nodes of a network. We present a continuous model of spatial interaction and
calibrate it for Greater Manchester. The model is a trip distribution model which produces an
allocation of trips from any area to all other areas in accordance with a derived trip density
function. The inputs to the model are density functions for residences and workplaces of car
commuters, and a velocity field. The velocity field defines a measure of the travel time between
different locations.

The outputs of the model are spatial distributions of accessibility of locations to jobs and
residences, and a spatial distribution of traffic flow. We find that the location most accessible to
jobs in Manchester is not in the centre of the city, but in a ring more than half a mile away from
the centre. The maximum accessibility to residences is found to be approximately five miles away
from the centre. The flow of traffic is derived as a spatial pattern and is found to peak
approximately three miles from the centre of Manchester. The paper restricts itself to vehicular
traffic and to radially symmetric spatial distributions. It should be seen as an attempt to introduce
three major elements: time, distribution, and traffic assignment into a geometrical framework for
dealing with problems of urban spatial interaction.

1 A geometrical representation of urban space

Any attempt to discern a spatial pattern in cities involves a large measure of
abstraction. Students of spatial structure and spatial interaction are usually concerned
with two types of abstraction: a geometrical representation, and a network
representation. The distinguishing characteristic of the geometrical representation is
that all the quantities which are discussed are associated with a continuous coordinate
system, where every point is located in a unique position in geographic space.

The distinguishing characteristic of the network representation is that all quantities
are associated with a discrete set of coordinates, where every point in geographic space
is assigned to a particular zone and every zone is associated with one or more nodes
in the network. Since the geometric representation involves the use of a continuous
coordinate system, all findings can be described in terms of distributions of quantities
in space. Many of the interesting findings in urban ecology, geography, and
economics are of this nature. Park and Burgess identify five rings of changing land
uses in the city (Park et al., 1925). Clark (1951) approximates residential densities in
cities by a negative exponential function. Alonso (1964) and others suggest a
structure of rents declining with distance from the city centre. In all of t_hese :
examples, quantities (or qualities in the case of land use) are associated “_’lf‘h s:patlal
coordinates. The pattern is discerned from the distribution pf these quant1t1_es in space.

In the network representation such patterns cannot be disce_rned. The city is
partitioned into a set of zones and the quantities associatef:l with each zone are
assigned to a node or a set of nodes. Hence nodes are assigned numbers.or setg of
numbers. These numbers do not form a spatial pattern, but are helpful in fleahx:lg
with movement in urban areas. A generation of transportation studies has mvarfably
adopted the network representation of urban space as a framework for analysis.
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The major contribution of transportation studies to the field was the development and
refinement of a variety of spatial interaction models. These models were used
effectively even though the number of zones and links in the system was relatively
large. Since the variables involved were all of a discrete nature, they yielded a fairly
simple mathematical treatment, and a straightforward application of computers. Each
study gave some insight into the particular structure of a given urban area, but the
contribution of these studies to a general understanding of urban spatial structure and
spatial interaction has been disappointing. Very few significant pattern properties of
cities or of movement in cities have emerged.

The search for pattern properties leads us back to the geometrical representation of
urban structure. The current weakness of the geometrical representation is the lack
of a consistent theory of interaction in continuous two-dimensional urban space.
Earlier studies of location theory have considered geographical space as a continuous
terrain where movement proceeded in straight lines. Thus in classical location
problems the optimal location of a parish school for children of three nearby villages
is found by minimising the sum of straight line distances travelled by the children.
While this may be an approximate representation in rural areas, it is far from
satisfactory in the city. In urban areas straight line distances are not good indicators
of travel cost or relative proximity. A mile in the centre of the city takes much
longer to traverse than a mile on the periphery, due to the heavy concentration of
traffic in central areas. A continuous theory of spatial interaction in cities must
therefore concern itself directly with the variations in the velocity of travel in urban
areas. We have chosen to treat velocities as continuously varying in space and
1n§1e'penden-t of the direction of travel, and to describe travel as taking place along
minimum time paths, bending away from regions of congestion. This approach has
been .described in a previous paper in this journal (Angel and Hyman, 1970a). The
velocity _field in this case functions as a continuous representation of the transportation
system, in the same manner that the abstracted set of major road links functions as a
transportation system in the network representation.

H.owgver, this does not yet tackle the problem of the continuous representation of
spatlal,}nteraction: “how are trips, particularly commuter trips, distributed in urban
space? _In the network representation this problem can be stated as follows: “how
mar.ly work trips originating in a given zone terminate in a given zone, and how many
Yehlcles travel through a given link?” In the continuous case we have to ask: ‘“‘what
is thfe density of trips between any two areas, and what is the spatial distribution of
traffic flqw?” In general the latter problem is more difficult, for while the first
pr_oblem involves summations, the second involves integrations. It is possible, however,
W1th_ very few simplifying assumptions, to construct a continuous model of urban
spatial interaction.

This paper focuses on the construction of such a model and its application to a
metropolitan area. It should be seen as a missing link in an integrated theory of
urban space based on a geometrical representation of urban structure. All variables
are treated as continuous distributions over the urban plane. Residences and work
places are given as density functions over the plane. The system of streets is
represented by a continuous scalar velocity field in the urban plane, where travel can
proc.eed in any direction. Spatial interaction is represented as an interaction density
ar'ld is used for the derivation of continuous accessibility functions and a continuous’
distribution of traffic flow.

. It was seen as particularly important to calibrate a continuous model of spatial
interaction in an existing urban area, so as to test the relative applicability of the
geon_letrical representation. The construction and calibration of the model was made
possible with two major simplifications. To avoid the problem of modal split we have
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considered only people commuting to work by car, and to simplify the mathematical
treatment we have regarded the density functions and the velocity field as radially
symmetric functions, varying only with distance from the city centre. The model
was calibrated for the Greater Manchester urban area for 1965, using data made
available by SELNEC (South East Lancashire-North East Cheshire) Transportation
Study™. A comparison between our results and those obtained by SELNEC
indicates that the continuous model gives reasonable results. Since the computational
and data requirements of the continuous model are small, it could become a powerful
research tool for urban spatial analysis.

The remaining sections of this paper are devoted to the presentation of the
continuous model of spatial interaction. Section 2 introduces the continuous trip
distribution model. The model requires two kinds of inputs: the spatial distribution
of residences and workplaces (section 3), and minimum travel times between locations
(section 4). It produces two major kinds of outputs: the spatial distribution of
accessibilities (section 5) and the spatial distribution of traffic flow (section 6). Each
section incorporates theoretical development with experimental results.

2 A continuous model of trip distribution

Trip distribution theory concerns itself with relating individual travel behaviour to the
overall pattern of travel. The theory centres around the derivation of a trip
distribution model which predicts, from limited information, the number of trips
between different locations in the city. These models have formed an integral part of
41l modern transportation studies, where their predictions are used to estimate the flow
of traffic on the various links of a transport network. The theory has also been used
to derive shopping models, residential location models, commodity flow, and various
other topics in the field of human spatial interaction.

Traditional trip distribution models are all of a discrete nature, using a zonal system
and a network representation of space. The main aim of this section is to present
and interpret a continuous model of trip distribution which utilises a geometrical
representation of urban space. We have chosen to introduce this model by ‘
familiarising the reader with the discrete trip distribution model derived b3_’ Wlls_on
(1967)®. The discussion of the continuous model parallels exactly the discussion of
the discrete model.

The discrete model 3
The city is divided into n zones. We assume that estimates of ‘the number of. trips
originating in each zone have been made. These could be 0bta1|1eq frgm a ‘Frlp
generation model which estimates the expected numb?r of work trips in a given area
from population, occupation, and income characteristics of the area.

We also assume that the number of trip destinations in each zone has been :
estimated from employment characteristics of the al.'ea.. Let' O; be t}_le nu1'rnber of trip
origins in zone i, and D; be the number of trip destinations in zone j. It is

(1) We wish to thank A. Hawkins and M. Hammerstone of the Mathemat‘ical Ana_lysis Uni't in the
Ministry of Transport, London, for their continuous assistance in obta1'mng and interpreting the
data. The SELNEC distribution model is described in Wagon and Hawkins (1970).

@) A similar model has been derived by Tomlin and Tomlin (1968). The ideas presented have ?Iso
been developed by Schneider (1967), Cohen (1961), and others. For a more extensive introduction
to the literature on trip distribution models the reader is referred to the April, 1970 (Volume 4, i3
number 1) issue of Transportation Research devoted to an exposition of recent developments in this
field.
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conventional to assume that the total number of origins is equal to the total number
of destinations®. Let Tj; be the number of trips between zone i and zone j. The
total number of trips from i to all destinations is the number of trips originating at i

Yy=0, i=12.,n. (1)
]

The total number of trips terminating in a given zone j is the number of trip
destinations in j:

YTy=D, Jj=12,..n. )

In order to estimate 7;; we also need estimates of interzonal travel costs, ¢;;, and the
average expenditure on travel in the system, ¢. We can then write
2 ]_Z?;,-c.-,- =T¢ . 3)

Wilson (1969) has shown that the most probable distribution of trips is obtained by
maximising the entropy

= -5 1T, @
subject to the constraints (1), (2), and (3). This maximisation yields®

?:; = Ai'B] Ofoe_ﬁCU L (5)
The constraints (1) and (2) can now be rewritten as

1

A ,ZBfoe e i1 e (6)
L_.?l,nd £

E_ I-A;'O{'e H, ’: 1923-")”' (7)

The above 2n equations together with equation (3) can now be solved for the A4;’s,
B/’sand B. These equations require an iterative solution. Once a solution has been
obtained, equation (5) predicts the number of trips between every pair of zones.

Equation (5), together with equations (3), (6), and (7), form the trip distribution
model. The model predicts that the number of trips between zone i and zone j is
proportional to the number of origins in i and the number of destinations in j, and
declines exponentially with the travel cost between i and j. The reciprocals of the
balancing factors 4; and B; have been associated with the accessibility of zone i to
employment opportunities, and the accessibility of zone j to workers respectively.
The balancing factors are functions of position only and are independent of zone
size. The effect of doubling the levels of population and employment in every
zone is to double the expected number of trips between each pair of zones. The
effect of doubling the area of zones is to quadruple the expected number of trips
between each pair of zones, rather than double them. This should clarify the
discussion of this problem by Wilson (1967, p.253).

(®) The total number of trips in the system, T, is therefore given by
T= ;0,- =3D;.
j

It is \)vorth noting that this assumption is not necessary to the derivation of the model (Hyman
1969). y

() The proof appears in Wilson (1969, pp.7-15).
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The continuous model

When urban space is represented as a field, we need no longer consider a zoning
system or a transport network. The distributions of population, employment, and
transportation are given as areal distributions. The model presented here requires the
continuous analogues of the inputs used in the discrete model: distributions of
residences and workplaces, and a measure of travel time or travel cost between
locations. These are then used to solve the equations of the model, and consequently
to derive a measure of the density of trips between pairs of locations. In deriving the
continuous trip distribution model, density functions for residences and workplaces
of commuters are assumed to be given. These are discussed in greater detail and
calibrated in the following section. Measures of travel time between locations are
also assumed to be given. These are derived and discussed in section 4.

Consider a polar coordinate system (r, 8), where r is the distance from the city
centre, and 6 is the angle between the radius vector and a fixed axis. An element of
area in this polar coordinate system is rd@dr®). We define the origin density
function, O(ry, 6,), as the number of trips originating in a unit area about the point
(ry.0,). Similarly we define the destination density function, D(r,,6,), as the
number of trips terminating in a unit area about the point (r,, 6,). In this study we
have adopted one square mile as our unit of area, but other unit measures may be
adopted. The diameter of the unit area must be small enough to avoid missing
significant variations in density, but large enough to average out local fluctuations.

The value of the trip density function, T(ry, 0, r,, 0,), is the number of trips from
a unit area at (r,,0,) to a unit area at (r,,60,). Its dimensions are number/unit area/
unit area. If T(r,,8,,r,, 6,) is defined for a given unit area, then doubling the
unit area will quadruple T'(r,, 0, r,, 8,) for every pair of points (r,,6,) and (r,, 6,).

As in the discrete formulation, we assume that all trips take place during a
specified time period, in our case the morning rush hour. It follows that the total
number of trips from a given unit area at (r;, 6,) to all other areas is the density of
origins at (r,, 6,):

@0 2"
j j T(rl,el,r2,62)r2d82dr2 =O(rl,91) fOrallrl,ﬂl. (8)
0 JO

Similarly, the total number of trips originating in the entire city and terminating in a
unit area at (r,, 0,) is the density of destinations at (ry,05):

o 2n
‘[ j T(‘rliel’rZ)eI)rldeldrl =D(r2962) foral]rlsez' (9)
0 JoO i
We still need a measure analogous to the travel cost between zones, ¢y, in the discrete
model. Given the coordinates of any two points (7, 8,) and (r,, 6,), we derive an
estimate for travel time between these points, #(ry, 0,72, 0,). Here travel tix_ne is
taken to be a satisfactory proxy for travel costs, as only travel by car is considered.
The estimates of travel time are obtained by constructing a velocity fie]_d (Angel and
Hyman, 1970a) where speed is a smooth function of positi.on. Travel times are then
calculated along minimum time paths between _any two pm_nts. ; :

Given the average travel time in the system 7, we can write the third constraint

equation as

w Moo MO (2m
J I I J. T(r,,9,,r,,Bz)r(r,,61,r2,62)r1r2d6,d62dr1dr2 =TT, (10)
0 Jo JO 0

(%) The following model is presented in polar coordinates, but the model equations can be easily.
rewritten using plane cartesian coordinates (x, v). The polar notation was adopted for later use in

the radially symmetric model.
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where T is the total number of trips in the system. T must satisfy the equation:

oo 21 oo 2
:r=j j o<r1,e.)ndeldrl=j j D(ry,0,)r,d0,dr5 , (1)
0 0 0

since the total number of trips, the total number of origins, and the total number of

destinations are identical by definition. ' .
In an analogous manner to the discrete formulation, the most probable distribution

of trips is obtained by maximising the entropy
o (foo 2w 2
-J J. J' J. T(r1,91,r2,62)1nT(r1,9,,r2,92)r|r2d9|d92dr|df2, (12)
0o Jo JO ]

subject to the constraints (8), (9), and (10). This maximisation yields'® a trip
density function:
q(r, 1-.91.05) = A(ry,0,)B(r,,0,)0(r, ,61)1)(’.2’92)5;4:0,.8,.r,,ﬂ,) . (13)

The constraints (8) and (9) can now be rewritten as

l - o ‘7 r r
m i j J B(r,,0,)D(ry,0,)e ut(ry+01012:0:)p,d6 ,dr,

0JoO

0&r, <o, 00, < 27, (14)
and
b f rﬂA(r. 0,)0(ry,0,)e #1:0::r2:0)p 46 dr, ,
B(r,,0,) 0o Jo : 2
0<r,<o, 0<60,<2r. (15)

Equations (14) and (15) together with the constraint (10) can now be used to obtain
the values for A(ry, 6,), B(r2 0,), and u. Since these integral equations do not
generally possess analytic solutlons numerical methods must be used to compute
values for these functions. The balancing factors, A(r,, 0,) and B(r,, #,), are
functions of location only, depending solely on the coordinates of the points. Thus
any interpretation of the balancing factors in the continuous model must deal with
attributes of location. (The form of the balancing factors, their relation to

accessibility, and their interpretation in the continuous model are presented in
section 5.)

The radially symmetric model
Obtaining values for minimum travel times in an arbitrary velocity field, V(r, 8),
involves a generalization of the procedure described by the authors in an earlier paper
(Angel and Hyman, 1970b) for radially symmetric fields. While a graphic solution in
the non symmetric case can be obtained manually using Huygens’ principle, a general
algorithm that could be programmed to produce travel times between any two
locations has not yet been developed. We have thus limited the following discussion
of the continuous model of spatial interaction to radially symmetric cities, using
radially symmetric density functions and a radially symmetric velocity field as inputs.
By restricting the analysis to radially-symmetric cities we follow the tradition of
many urban analysts. We must distinguish carefully, however, between the various
traditions of the radially-symmetric urban model. Urban ecologists and economists
have shown a preference for the concentric ring model. Park and Burgess have
developed such a model of urban growth, the city being divided into a system of five
concentric zones (Park et al., 1925). Alonso (1964) has applied Von Thunen’s
concentric ring theory of agricultural location to urban land economics, dividing a

(6) The proof appears in appendix 1 of Angel and Hyman (1971).
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single centred city into concentric rings, of infinitesimal width, which are the
equilibrium amounts of land consumed by residences and firms. Other urban
economists, notably Wingo (1961), Muth (1961, 1969), and Mills (1967, 1969),
follow the same tradition of the original concentric ring model. In all these models
travel proceeds on radial routes to the city centre. The question of trip distribution
never arises since all trips end at the central business district (CBD).

A second approach to radially symmetric cities can be found in the transportation
literature, where an established body of work is devoted to circular cities. Analysts
try to measure different attributes of transport behaviour, making various assumptions
on routeing systems. Mean journey lengths on various routeing systems (Holroyd,
1966), traffic flow on radial and circumferential routes (Lam and Newell, 1967),
minimum cost paths (Wardrop, 1969), and various other topics have been studied in
this context. This approach allows for traffic to proceed in all directions, and does
not limit itself to movement to and from a single centre. The assumption of radial
symmetry seems to have been introduced by the need for geometrical simplicity, and
by the transport analyst’s preference for radial and circumferential routeing systems.

These transport studies seem to have remained isolated from the other analyses of
urban spatial structure and spatial interaction. At the same time, the theoretical
approach of urban spatial economics has not found its way into the transportation
literature. In the model presented below we attempt to lay a foundation for
combining developments in both fields into an integrated conceptual framework.

The circularity of the city is retained. Residences and jobs are assumed to be
distributed throughout the city in a radially symmetric fashion. This view follows
that of the urban economists mentioned above and the empirical models of residential
densities advanced by Clark (1951) and others. Jobs are also distributed throughout
the city in a radially symmetric fashion. This generalises the assumption that all jobs
are located in the CBD. Since jobs and residences are available everywhere in the city,
travel in our model must take place in all directions, as in the transport theorists’
view, rather than to and from the city centre. We assume, however, that there are no
routeing systems and that travel proceeds along minimum paths in a radially symmetric
velocity field. This concept of transport is similar to, but more general than, that
suggested by Wardrop. Again, symmetry is introduced by the need for geometrical
simplicity.

The assumption of radial symmetry modifies the equations of the model presented
above. We assume that densities are a function only of the distance from the city
centre:

o(r,,8,) = 0(ry), (16)
and
D(r,,0,) = D(rp) . (17)

The expression for travel time, and the expression for the trip density are assumed to
be invariant under rotations about the city centre and reflections in any axis through
the city centre. Under these assumptions it can be shown that the ba}ancing factors
are independent of the angular coordinates, and the trip density function takes the

form (7:
1(ry,0,,ry,0,) = A(r, )B(rz)o(rl)D(rz)e_m(r"ﬂ' 1 03) (18)

() The proof of this result appears in Angel and Hyman (1971), appendix 2.
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The constraint equations (14) and (15) can now be written as

1 2w
A(}'l) = o V‘AD B(r2)D(r2)e_“f(ru5x-?1-B:)r2d62dr2 ) 0 é rl < oo i (19)
and
1 el
B(ry) ~ Jo L AC)O(r e 0 do dry, 01 <oo. (20)

[t follows that the expressions on the right hand side of equations (19) and (20) are
independent of 8, and 6, respectively.

Given the above two equations, together with equation (10) which remains
unchanged in the radially symmetric model, we can evaluate the decay parameter p
and determine the form for the balancing factors.

This model was calibrated for the Greater Manchester urban area, using data and
results obtained by the SELNEC Transportation Study for 1965 ). The parameter u
was estimated and the balancing factors were derived as functions of distance from
Central Manchester. (The forms for the balancing factors are presented and discussed
in section 5.) In order to test the accuracy of our predictions of the distribution of
trips, we have compared them with the results obtained by SELNEC. The relevant
comparison is to compare the travel time distribution predicted by both models.
Namely, how many trips of each duration are predicted by the models. This
comparison is presented in figure 1. As can be observed from the figure, our model
predictions follow closely those of SELNEC. Minor deviations can be detected. Our
model predicts fewer short commuting trips and more long trips than the SELNEC
model. It can be said, however, that given the simplifying assumptions discussed
above, the continuous model yields satisfactory results.

Percentage of commuters
[ Y L = ) L | e O
o c o orsis & &
-
¢
+
+
4
+
+

— Model
oy + SELNEC

0 5 10 15 20 25
Length of journey (minutes)

-
(=]
+

Figure 1. A comparison of travel time distributions of car commuters in the Greater Manchester
urban area, 1965.

3 Residential and employment densities of commuters

Having presented the radially symmetric model, we now discuss the radially symmetric
density functions for residences and workplaces which are used as inputs to the
model. Traditional analyses often use the negative exponential decay function to

(8) The computer program for calibrating the continuous model appears in appendix 4 of Angel
and Hyman (1971).
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describe population densities:
d(r) = ae™ 21)

where a is related to the total population, b is a constant associated with the rate of
decrease of densities with respect to r, the distance from the city centre. This
analysis is originally due to Clark (1951), but has since been adopted and expanded
by various analysts of urban spatial structure. Our preliminary analysis of the data
showed that the exponential decay function did not fit the data properly. In the case
of the distribution of residences the fit was worst near the city centre, where there
are hardly any residences. Away from the centre residences quickly build up to a
maximum density and then fall off again. This behaviour is also exhibited by Clark’s
data and Clark remarks that the negative exponential curve does not describe
population densities in the CBD. In order to obtain a curve describing the data over
the full range of distances from the centre we fitted a gamma distribution, with a
density function of the form:

d(r) = ar® e . (22)

The parameter b takes a positive value, so that the density of residences at the centre
is zero.

In the case of jobs it was found that the cumulative distribution of workplaces
approached the origin with a strictly positive gradient. This implies that the density
of jobs at the centre is infinite and initially declines more rapidly than an exponential
function. This behaviour is described by a density function also of the form of
equation (22), where the parameter b takes a negative value.

Having chosen gamma distributions as models for the distributions of residences
and jobs, we find the problem becomes one of estimating the parameters of these
models. The procedure for obtaining the maximum likelihood estimates of these
parameters is described in Angel and Hyman (1971), appendix 3.

The resulting density functions are

Ofr) = 11p4r e ¥ " (23)
for origins or residences of commuters, and
DGr) = 4617r " Sle VP (24)

for destinations or locations of employment of commuters. The distribution curves
for origins and destinations are presented in figure 2. In order to illustrate the
radially symmetric properties of the density functions we also present them as
surfaces in isometric form in figures 3 and 4.

In order to run the trip distribution model it was necessary to normalisg the
distribution of origins and destinations to the same total number. We notice,
however, that at any radius the cumulative number of jobs always exceeds t.he.
cumulative number of workers. There are more destinations than origins.w1'thm any
circle about the city centre. The cumulative number of workers li}ring within 20
miles of the centre of Manchester and commuting to work by car is found from
figure 2 to be 166353. The cumulative number of jobs takf:n 'by car coml.nuters up
to this radius is 168698. We assume that all the workers within the 20 {mlfe contour
also work within this contour and taken together, their workplaces are dl.strlbuted
randomly amongst those available. We therefore reduced the density of jobs by the

) The isometric projections were obtained by means of a calcomp plotter available at the University
of London Computer Centre. The subroutine for plotting the su.rfaces are developed .by J. Adams,
Royal College of Art. The furthest points on these figures, and in figure 5, are 20 miles away

from the city centre.
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ratio of these two numbers to obtain an equal total number of jobs and workers
within the 20 mile contour.

The development of the general continuous model for the distribution of trips
involves the relaxation of the radial symmetry assumption for population densities.
Dacey (1968), for example, considers a city composed of several centres of population.
He then assumes that the whole population can be divided into several classes, each
class being distributed independently around one of the centres. The density function
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Figure 2. Residential and employment distributions of commuters in Greater Manchester, 1965.
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for the whole population is then obtained by adding together the density functions
corresponding to each centre. This kind of analysis has an obvious application for
modelling a regional distribution of population. It might be possible to associate
centres of employment with different towns and decompose the distribution of
residences by means of their employment location. Another kind of analysis is
described by Gurevich and Saushkin (1966). They consider a single centre city where
the population density declines steadily away from this centre. They then discuss
five types of cities, each representing a different pattern of radial and angular
variation in the population density. These density patterns may be relevant to
describing the distribution of population in large conurbations.

4 Travel time on minimum paths

The continuous model presented earlier requires an estimate of the travel cost or
travel time spent by commuters on their journey to work. When commuters reside
and work throughout the city, we must have a procedure for calculating travel time
or cost between any two points on the urban plane. The present section outlines
this procedure for a radially symmetric city. A fuller discussion appears in Angel and
Hyman (1970b).

Given the location of his residence and his job, the commuter must complete his
journey to work. We assume here that the commuter selects the route which
minimises the time spent on his journey. An analogy between travel time and
expenditure is immediately apparent. Wingo (1961, p.43) pursues this analogy by
indicating the similarity between expenditure on a commodity with a uniform price
and travel time for uniform motion:

E = pq (25)
and
1
e (26)
t=1ys,

where E is the expenditure, p the price, and ¢ the quantity purchased, and where 7 is
the travel time, 1/V the time per unit distance, and s the total distance travelled.

In commuting, where motion is no longer uniform due to congestion, the analogyf
must be pursued further. The marginal expenditure of a commuter at a point on his
journey is the price he pays for consuming a unit of transportation services there,
that is,

dfirs @7
gt =

By direct analogy we can write
S (28)
TR

The latter equation can be recognised as the differential equation of motion. 'When
we are only considering car commuters it is reasonable to assume that expenditures on
the journey to work depend mainly on the time spent travelling. Petrol and ot.her
variable costs are assumed to vary directly with travel time. Thu.s total ejx'pepdflture
on commuting (including time spent) varies directly with trz'wel time. Minimizing
travel time will therefore be identical to minimizing expenditure on tra:vel. We car}
then regard the price of a unit of transportation services, at each location, as the time
spent in travelling a unit distance at that location. We proceed by analogy to rent

theory.
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In determining the location of his household the consumer percei
location R(r). This rent is the price per unit of housing (or land) at
from the city centre. The individual perceives the rent at a particular
as given, but R(r) is determined by the interaction of the supply of ho
aggregate demands of all consumers. Similarly, the commuter perceives
given at each location although the velocity of travel, ¥(r), is determined
interaction of the supply of roads and other transport services with the agg
demands of all commuters. Just as where many households desire to
is high, where many commuters desire to travel the time per unit distan
the velocity of travel, V(r), is low, which amounts to the same thing.
is a function of where one travels in a city and is independent of the d
travel we can construct a scalar velocity field, V(r, ). In the radially syr
the velocity will be a function of distance from the city centre only, nam
In a previous paper we have constructed such a velocity field for Great
1965 (Angel and Hyman, 1970a, p.213). In a later paper we have fou
initial estimates for travel time on this velocity field varied directly with
travel time on the transport network, but were consistently lower (Angel

1970b, p.10). A new velocity field was thus constructed for Greater
This velocity field takes the form

V(r) = 18-5—12-5¢7056

where r is measured in miles and V(r) in miles per hour. Thus the
the centre is 6 mph increasing rapidly with distance from the city centre
a maximum of 18-5 mph at large distances from the centre. 4

We can represent the behaviour of 1/¥(r) by an inverse velocity field a
urban plane. The inverse velocity field for Greater Manchester, 1965, is |
figure 5. As can be seen from the figure, the inverse velocity field is fur
the urban plane at the city centre, and closest and parallel to the urban
distances from the €ty centre. This field is then a measure of congestion
It is high when COngestion is high anq Jow when there is little or no con

o

5. '
Fighre for Greater Manchester, 1965.
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The total travel time along a path P on the urban plane is then given by the path
integral

" ds
tap = Pm ; (30)

and is represented as the vertical area between the inverse velocity field and the path
P traversed in the urban plane. To define 4 uniquely between two points we need
to specify which route the traveller will take. We make the assumption that each
traveller selects that route P which minimises the total travel time from his origin A
to his destination B. In the discrete formulation, minimum travel costs are usually
computed by means of a shortest route algorithm (Murchland, 1969). In the present
formulation we solve the calculus of variations problem of finding the quickest path
between two points and obtain a differential equation for the minimum time path.

This differential equation for radially symmetric cities has been derived in Angel
and Hyman (1970a, p.217) and takes the form

dr '
it e ¥

0 KV(r K3y3)% (31)
where K is a constant associated with the path. K is evaluated by integration of
equation (31) and substitution for the polar coordinates of the points A and B. We
can now substitute for the differential element of distance its expression in terms of
the polar coordinate system:

As = (Ar?+r2A0%)% | (32)

and derive the differential equation for minimum travel time. This equation takes the
form

e r
dr =~ V(r*—- K*vV?)% -

The integral form of this equation is

B rdr

o= |, Tt (34)
We can thus compute travel time by first solving equation (31) for K and using this
value in the integration of equation (34). A more detailed exposition of this method
of calculation and a comparison between the values produced and those obtained by
the SELNEC study for Greater Manchester may be found in Angel and Hyman
(1970b). This procedure allows us to compute a unique measure of time #(ry, 0,,r,,0,)
between any two points (r,, 8,) and (r,, 8,) in a given velocity field V(r). We use
these values to calibrate the radially symmetric trip distribution model described in
section 2.  nldshe i

The development of the general continuous model for the dlstrlbutfon of trips
requires the relaxation of the radial symmetry assumption for tra}vel tlme._ This
symmetry arises from the assumption that the velocity of travel is a function only of
the distance from the city centre. In Angel and Hyman (1970a) we solve t?le calculus
of variations problem of finding the minimum time path between two loS;at.lons and
obtain Euler’s differential equation as the condition for a minimum. This is a sgcond
order differential equation, but in the case of radial symmetry we cap optam a'ﬁrst
order differential equation as its first integral. The first order eqya?lon is relatively
easy to solve and the results of this paper and the detailed analysis in Angel and

Hyman (1970b) arises from this solution.

(33)
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In the general case we must deal with the second order equation directly. It
should be possible to develop numerical techniques for solving this equation but the
computation is bound to be far more laborious. Angel and Hyman (1970a) describe
two other methods for the construction of minimum paths. The time surface method
can be readily adopted in the non-radially symmetric case and a non-radially
symmetric time surface constructed. The approach might then proceed through
optimising techniques to produce the shortest paths on this surface. The third
method—making use of Huygens’ construction—is entirely independent of the radial
symmetry assumption but needs considerable adaptation in order to become a
practicable method for computation.

5 Balancing factors and accessibilities
This section is devoted to the presentation of the results of calibrating the radially
symmetric trip distribution model for Greater Manchester, and to the interpretation
of these results using basic concepts of spatial interaction. We begin by presenting the
derived forms for the balancing factors A(r,) and B(r,), and studying their behaviour.
The reciprocal of the balancing factor for origins 1/A(r,) is interpreted as the
relative accessibility to job opportunities at a location r, miles from the city centre.
1/B(r,) is interpreted as the relative accessibility of a location r, miles from the city
centre to residence. In order to obtain unique measures of accessibility we derive the
normalising factors, A*(r,) and B*(r,), following the approach of Kirby (1970). The
reciprocals of the normalising factors are then interpreted as the accessibility of jobs

and the accessibility to residence respectively. These are given for Greater
Manchester, 1965.

The balancing factors
Recall equations (19) and (20) for the balancing factors in the radially symmetric
model. For illustration purposes we rewrite these equations as

1 on 2
= J‘ B(’z)D(?z)"zJ e_"”("'e"”'oi)dﬁzdrz ; 0<r, <oo, (35)
A(ry) 0 0
and
1 o 2w
= J‘ A(rl)O(rl)rlj. g H(r:0::72:02) 49 dr, , 0<r, <oo, (36)
B(ry) 0 0

The following term of equation (35),

2m
J e—pt(rl.ﬂ,.r,,ez)dez f
0

can be interpreted as the proximity of r, and r,. It will be large when |r,=r,| is
small. The left hand term of equation (35) increases with the number of job
opportunities available at r,. 1/A(r,) will therefore be large when there are many job
opportunities in the proximity of r,. By a similar argument 1/B(r,) will be large
when there are many residents in proximity to r,. 1/B(r,) is therefore a measure of
the competition of all residents for jobs at r,. The contribution of jobs at r, to the
term 1/A(r,) will therefore be small if there are many residents competing for jobs at
r,. 1/A(r,) therefore has a natural interpretation as the relative accessibility to job
opportunities at a location r, miles from the city centre. It is related directly to the
number of jobs in close proximity, and is related inversely to the number of residents
in close proximity to these jobs. By a similar argument 1/B(r,) has the same
interpretation of the relative accessibility to residents of a location r, miles from the
city centre. It is related directly to the number of residents in close proximity, and
is related inversely to the number of jobs in close proximity to these workers.
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1/A(ry) and 1/B(r,) are interpreted as relative values since, as can be seen by
inspection of equations (10), (18), (19), and (20), they are both determined only up
to a constant multiple, say k. Thus the balancing factors kA(ry) and B(r,)/k will
yield the same distribution of trips. To obtain values for these functions, an initial
value, say the value of B(0), must be fixed arbitrarily. A form of the discrete trip
distribution model which does not contain such an arbitrary scaling factor was
developed by Kirby (1970) and is discussed below.

The normalising factors
Kirby defines the quantities A and B} as the normalising factors. The normalising
factors are constant multiples of the balancing factors 4; and B; of the discrete model

discussed-in section 2. They appear when equation (5) of the trip distribution model
is rewritten in the form

ArBF
L = ‘#T 0, D; f(cy)) , (37)
where T is the total number of trips in the system and f(c;;) a decay function (taken
to be the negative exponential function in the discrete model presented earlier). The
values for the normalising factors are defined by the condition
YAPO, = YB!D; =T . (38)
I !
This condition, together with the constraints (1) and (2) which require the total
number of origins, the total number of destinations, and the total number of trips to
be identical, is sufficient to determine Af, B}, and . It can be verified that the
relationships between the balancing factors, 4; and B;, and the normalising factors, A7,
B, and v, take the form

AP = A, Y B;D; (39)
]
B} = B;XA0;, (40)
and
1
ij

The definition of the normalising factors in the continuous model exactly parallels
that of Kirby. The continuous version of equations (39), (40), and (41) produces
expressions for A*(r,), B*(r;), and v in the form

AS ) 2TTA(’|)J‘ B(ry)D(ry)rpdrs (42)

B*(r,) = 27rB(r2)L A(r)O(ry)rydr, , (43)
2w P

i 4—;'.[ J‘ A(r,)B(ry) O(r,)D(ry)r rydrydrs . (44)
0Jo

The reciprocals of the normalising factors, 1/A*(r,) and 1/B*(r2'),. are respectively

the accessibilities of a given residential location to job opportunities, and the

accessibility of a given employment location to residences. These h?lve .been

computed for the Greater Manchester urban area and are presented in -f{gure 6 :
The surprising feature of these results is that the maximum accessibility to jobs is

not at the centre of the city but in a ring approximately a mile away f;:or_n the

centre, in spite of the large number of jobs available at the centre. This is due to the

—
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fact that congestion in the central area reduces the proximity of very central locations
to jobs outside the centre. The inaccessibility of the centre to jobs for car commuters
manifests itself clearly in the existing distribution of residences (figure 3), where it
can be seen that there are hardly any residences of car commuters in close proximity
to the centre.

The reader should also note that the accessibility of jobs to residences peaks quite
a distance away from the centre. This is due in large measure to the concentration of
residences in this region. It indicates that those industries and businesses seeking to
maximise access to residences would benefit by moving away from the centre to
suburban locations. As can be seen by comparing the existing distribution of jobs
(figure 4) with the distribution of accessibility to residences, the current distribution
of jobs fails to correspond to the distribution of accessibility. Most jobs are
concentrated closer to the centre than the location most accessible to residences.

o
—
=]

0-08+

Accessibility

0-061

0:04-

0:02

to residences
. A 1 5 i : = - 10 jobs

0 2 4 6 g8 10 12 14 16 IR

r (miles)

Figure 6. The accessibilities of residences to job opportunities and workplaces to residents in
Greater Manchester, 1965,

6 Traffic flow
Traffic assignment

The problem of traffic assignment is to determine the total flow of traffic on each
link in the road system. In the discrete formulation the trips between each origin-
destination pair must be assigned to the minimum cost path, and the resulting loads
on each link can then be aggregated. In the continuous formulation we do not have
a network model of the road system. What we do have are the densities of trips
between locations, and the minimum time path between them. So the problem of
traffic assignment in the continuous formulation would be to aggregate the flow
densities along each minimum path passing through a specified location. This problem
has been formulated by Lam and Newell (1967). They assume that travel takes place
only in radial and circumferential directions and derive a continuous approximation
for flow of traffic in each of these directions. Lam and Newell do not derive a
distribution of trips, assuming that this has been specified. In the present context W&
can use the output of our distribution model to produce the forms for these flows.
In the following illustration we consider only the radial component of flow, C(r),
which is the number of trips crossing a circle r miles from the centre.
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The function C(r) is referred to here as the cordon crossing function. C(r) is
composed of three types of terms

Ar) = Co(r+ G(r)+2Cp(r) (45)

where Cp(r) is the total number of trips crossing the circle in an outward direction
only, Cy(r) the number crossing only in an inward direction, and Cp(r) the number
which cross the circle twice, first in an inward diréction and later in an outward
direction. It has been shown in our previous paper (Angel and Hyman, 1970b, p.14)
that the nature of minimum paths in the types of velocity fields usually encountered
preclude the possibility of trips which cross a circle initially in an outward direction
and later cross the same circle in an inward direction. These kinds of trips are
therefore not included in the calculation of the cordon crossing function. The
functions Cy(r), Cy(r), and Cp(r) can be computed from the trip dens1ty function by
means of the following integrals:

2n (2w

Colr) = f L L L A(ry) O, ) B(ry) D(r) 4072001020y, 1,40, 0, drydry ,  (46)
r 2n 2n

G(r) = LJ .[o J.o A("l)o(f'l)B(-’z)D("z)e‘“‘("nh-ﬂu’eﬁ)?‘l"zdeldezdrld"z 5 (47)

w 2n p2nm
Cp(r) = J. J‘ J. j. A(r))O(ry)B(ry)D(ry) e Hera:f1:02)y rzdﬁ' do,dr,dr, . (48)

16,— 0,1 >0

where § represents O(ry, r)+0(ry, 7). '

In the first expression we compute the total number of trips from origins up to a
radius r, and destinations that lie beyond r. These are all the outgoing trips crossing
a circle of radius r. In the second expression we compute the number of trips
between origins that lie beyond a radius r and destinations that lie inside . These are
all the ingoing trips crossing a circle of radius r. In the third expression we compute
the number of trips between origins and destinations outside a radius r, which are
separated by an angle wide enough so that the minimum time path between the two
radii crosses the circle of radius r twice. |0;—6,| denotes the absolute value of the
difference between 6, and #,. The function 6(r,,r) is the critical angle between the
radii r, and r, and represents the angle traversed by a trip from r, whose path
terminates at a tangent point to the circle of radius r. This variable and related
variables associated with the geometry of minimum paths are described in more
detail in Angel and Hyman (1970b).
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Figure 7. The crossing functions for Greater Manchester, 1965.
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The forms for the crossing functions derived from the radially symmetric model for
Greater Manchester, 1965 are presented in figure 1. SO

It is important to note two features in figure 7. First, it can be observed that the
number of cordon crossings is influenced mostly by ingoing trips, and therefore peaks
where these crossings are at a maximum, that is at about 5 miles from the centre of
Manchester. The contribution of outgoing trips is minimal throughout, The
contribution of double crossing trips is only apparent at close distances to the centre
where they reach a value of approximately 30000 crossings at a mile from the centre.
In other words, 15000 enter a circle of a mile radius and exit it before they reach
their destinations.

Second, note that the curves for 2Cp(r) and C(r) are shown in broken lines inside a
mile radius. This is due to the form of the computer output which specifies crossings
of radii at one mile intervals. We have therefore extrapolated these curves towards
the centre, our only condition being that equation (45) is still satisfied. Consequently
we cannot be entirely sure of the behaviour of the function C(r) at the city centre.
More precise calculations might indicate that this extrapolation needs to be revised.

These crossing functions describe the equilibrium distribution of traffic in the city.
Their relationships to the flow of traffic on the roads at each location, and
consequently to the velocity there, demand further study. When these are established
it will be possible to use the continuous model to explore the consequences of
changes in the capacity of the road system.

The law of conservation of traffic
An important relationship exists between the functions Co(r) and C;(r) which is quite
independent of the distribution of trips. Define the net flow, N(r), across the circle

of radius r as the difference between the total ingoing flow and the total outgoing
flow at r.

N(r) = [Co()+ Gi(N]— [Co(r)+ Co(r)] = Ci(r)— Cor) . (49)

This difference must be equal to the difference between the total number of trips
consumed inside the area bounded by the circle of radius r and the total number of
trips produced inside that area, that is,

R
N(R) = 2n L [D(r)— O(r)]rdr . (50)
The differential form for this equation is
dN(r)
—ar_ = 2mr[D()- 0] . (51

Equation (51) is analogous to the equation of continuity in fluid dynamics
(Rutherford, 1959, p.8). In the present context this equation expresses the condition
that the total number of vehicles cannot change in a closed traffic system—the law of
conservation of traffic. This law, also referred to as the equation of continuity
(Ashton, 1966, p.39), provides a basis for developing kinematic theories of traffic flow.

7 Ideas for further research

The radially symmetric model discussed here can be used quite effectively to obtain
several results which are not presented in this paper. In particular the model yields
average travel times to work from each residential location, thus making it possible to
analyse the economics of rent. Most theoretical studies of urban rent utilise a radially
symmetric model for their analyses. They invariably postulate some form for the
transport cost of commuting to work, as this cost, together with rent, determines the
locational equilibrium of households. The average travel time function produced by
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this model sheds light on the economists’ transport cost function, and will be discussed
in a future paper.

The results presented in the last chapter on traffic flow can be studied further by
utilising data on flow in existing cities, and by developing a spatial relationship
between velocity and traffic flow, which will be consistent with empirical findings.
Developments in this direction are crucial if the model is to be used for transport
policy formulation. |

All the results obtained in this paper rely heavily on radial symmetry, although the
trip distribution model is presented for the general non-radially symmetric case. To
relax the radial symmetry assumption one must represent the inverse velocity field as
a landscape of hills and valleys, where congested areas are shown as peaks and fast
corridors as troughs. A computer program must then be devised to calculate minimum
travel time in such a field. This program can be structured on one of three principles:
it can rely on the solution of the second order differential equation for the minimum
time path; it can be developed by analogy to Huygens’ construction of the path of a
light ray in a continuous medium; or, it can be developed by analogy to the soap
film model, where a soap film of minimum area forms between two vertical lines at
the origin and the destination, the urban plane and the inverse velocity field. Each of
these three procedures yields, in principle, the form of minimum paths and the value
of the minimum travel time between any two points in a non-symmetric field.

A non-symmetric velocity field could be approximated from road speed data by
averaging the velocity at different locations, and using a contouring program to
obtain equal velocity contours in the city. The same method could be applied to
obtain non-symmetric density functions for residences and workplaces of commuters.
With the aid of these non-symmetric functions, the model could be run in its
generalised form, possibly improving the results considerably and extending the
applicability of the continuous model to policy research.
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New towns by P. Merlin, Methuen, London, 1971, pp.276, £5.00

The term ‘new town’ must surely be one of the most loosely used labels in the terminology of
planning. What exactly does it mean, what is implied in terms of content and function, and what
are the typical circumstances which have led to the widespread adoption of ‘new towns’ as planning
measures?

Professor Merlin’s book sets out to answer these important questions in the context of nine very
varied countries (UK, Sweden, Denmark, Finland, the Netherlands, France, USA, Poland, and
Hungary) and for this reason alone the book seems assured of a wide and interested audience.
Beyond this general readership, however, more specialized interest is likely to focus around two
particular themes—urban design and its details, and the tools, mechanisms, and agencies of the
planning process itself as it operates at what Hall (1970) has called regional/national and
regional/local levels. For both these interests the book provides welcome detail, which is arranged
under broadly consistent themes (design policy, building mechanism, housing, administration,
finances, employment, population, social life, and so on) in the case of town construction and
content and which is presented as a brief summary of the official planning structure and regional
planning ‘history’ so far as the planning process is concerned.

Neither of these subjects is particularly easy to present. The first can too easily become a
catalogue whilst the complexities of the latter are difficult enough to deal with in one’s own
language, let alone somebody else’s, and it must be admitted that the book does not always
escape the first of these pitfalls and is often rather overwhelmed by the second. On the design-
detail side, comprehension is not helped by half-a-dozen town plans devoid of any key, or
more fundamentally, the almost total absence of local maps naming the features described and
illustrating their relationship to each other. If the reader’s knowledge of suburban Stockholm or
Upper Silesia is somewhat vague, or nonexistent, he will get little help from this book, and the
many new place names will remain only dimly associated with real places and situations.

The more widespread difficulties encountered with the description of the planning process seem
to arise partly from an attempt to deal too briefly with very complex situations, and partly in the
translation from the original French text, for there are many passages which make difficult reading
and some whose true meaning is quite obscure. In this manner, intriguing and important ideas such
as the existence around Paris at one stage of a ‘carcan’ (though not translated, this means ‘iron
collar’, was it a sort of urban fence?) are touched upon but not elaborated, and in the section on
Britain, where the reviewer can judge more freely, one is often left with a feeling of a somewhat
misplaced emphasis in the description of the new town and expanded town situation.

Even so this is a very difficult problem to tackle and the reader’s sympathies are likely to be
with Merlin in his pioneering attempt to present a rare comprehensive picture. After reading the
book one scarcely knows whether to be appalled or reassured that in none of the countries
described does this type of planning appear to be free from the confusion of plan, new plan,
strategy, revised strategy, false starts, and fresh starts which are not unknown here—and Britain’s
record as described in the book emerges as well as any. Difficulties or not, there is much salutory

reading here for ‘regional planners’.
G.C.Dickinson, Department of Geography, University of Leeds, Leeds, England.
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Land use by D. R. Denman and S. R. Prodano, Allen & Unwin, London, 1972, pp.240, £4.00

This is billed as an introduction to “proprietary land use analysis”, that is, it purports to describe
While many of its inputs, as is so common in the social sciences, come

a discipline sui generis. : ’ ; :
f the questions raised are economic, as one might

from other disciplines, this reviewer finds most o




