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URBAN TRAVEL TIME

by Shlomo Angel and Geoffrey M. Hyman*

1. INTRODUCTION

To compute the travel time between locations in an urban area we have ab-
stracted urban space into a velocity held, where travel takes place on the plane,
where the velocity of travel varies continvously at different locations on the plane
and where travellers move along minimum time paths. The movement of traffic
then resembles the movement of a ray of light through a medium of varying density.
This view of travel is not novel and has been discussed in the past hy several authors
such as Losch [8], Beckmann [3], Bunge [4] and Warntz {13], [14]. The difficulty
encountered in the treatment of movement in conlinuous space is usually of a
mathematical nature.  Studies remain gencrally suggestive and fail to produce the
concrete ohservable results which the network models are capable ol producing.

This paper, as our previous one, sce Angel and Hyman [2], should be scen
as a contribution to the analysis of space as a continuous terrain.  This analysis
is particularly suited to moden urban arcas, where transportation networks are suf-
ficiently dense to admit the consideration of the velocity at any location as an average
velocity of travel on the road network in the immediate area surtounding this loca-
tion. We thus ignore variations in travel specds in different dircctions and stress
that velocity is mainly a fanction of position rather than direction and is thus a
scalar measure,  Although we arc aware that al a more detailed level speeds at
any location do vary with direction, we attribute the major variations in speed
to location. Thus suburban areas where densitics are low allow for considerably
higher velocities than congested urban centers,  Congestion is taken to be con-
tagious: if a few roads in a certain area are burdened with heavy traflic moving at
low speeds then all roads in this area will in the long run become equally congested
as drivers shift their minimum routes to reduce their travel time, and speeds in the
area will become approximately identical. Tramsportation studics usually choose
a serics of major links in the road system to construct a road network, which is usually
of a much lower density than the existing strect pattern.! We choose to include
all streets and to assume that the pattern is dense encugh to admit the view of urban
travel as taking place in a continuous field where velogitics do not vary appreciably
between nearby locations.

In the following analysis we restrict ourselves to radially symmetric velocity

* The authors are associated with the Centre lor Environmental Studies, London, Iingland.

! The problem of calculating truvel time is then reduced to the problem of finding the shortest
route on the network, Procedures for finding shortest routes on networks have been extensively
developed in the past decade, See Murchland [11].
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fields, where velocity varies only as a function of distance from a single center.
With further refinement the analysis could be extended to non-symmetric ficlds.
The present anulysis also implicitly restricts itself to surface travel. Travel time
cstimates can be obtained from urban velocity fields, assuming that travelers want
to minimize the time of travel between their origins and destinations.  When it is
possible 1o compute travel time continuous space becomes more useful in the
analysis of wrban rent and shopping arcas. Rent theorists, such as Alonso [1]
and Mills [9] [10], utilize the continuous space view of transportation but are usually
forced to simplify their concept of travel due to mathematical difficulties. Their
analyses could be extended, in their own continuous framework, with a more realistic
view of urban transport using velocity ficlds. Market arca analysts, such as Huff
[6] and Gambini, Iuff and Jenks [5], also tend to limit their analyses to a simplified
transport plane or grid. These could also gain a new dimension when the transport
plane is distorted due to regular variations in velocity.

In order to test the validity of this view we have constructed a velocily field
for the Greater Manchester Urban arca. A scalar, continuous, and radially sym-
metric velocity field was estimated for Greater Manchester, 1965, by calculaling
the average link speeds at different distances from the center and fitling a negative
exponential curve to the observations. The curve was found to be

Vir) . 24.9 -~ 16.9¢ —50r
where 7 is the distance in miles from the city center and ¥(r) is the velocity in m.p.h.

at that distance. This velocity field is shown in Figure 1. Given this velocity
field, we have utilized the concepts and procedures described below to measure
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FIGURE . The Velocity Field for Greater Manchester, 1965
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FIGURE 2. Comparison of Travel Time on the Greater Manchester Velocity
Ficld with Travel Time on Shortest Routes on the Road Network

travel time on minimum routes between locations.  We then compared our estimates
of travel time with the estimales obtained by the SELNEC (South East Lancashire
North East Cheshire) Transportation Study.?  The latter were computed from survey
data, utilizing a shortest route algorithm.

Nincty pairs of estimates were compared.  The velocity ficld cstimates were
found to be roughly proportional to the network estimates, but were all found to
be consistently lower than the network estimates (the slope of the regression line
is 0.74). This is illustrated in Figurc 2. The lower estimates may be duc to the
view of travel as taking place on curved paths, while in reality travelers wander
through a system of strects and intersections.  This notion suggests that all our
velocitics need to be scaled down by a factor which reflects the resulting increase
in journey time. A new estimate for the velocity licld for Manchester may now be
obtained by multiplying all velocities by the slope of Figure 2, which is (.74

V(r). - 1B.5 - 12.5¢ 0

This can only be an approximation since the regression line in Figure 2 does not

pass through the origin, To obtain a betier approximation for ¥{r} a new sample

of travel times can again be compared with time measurments on the new velocity
field.

In the following sections we describe three interrelated methods for computing

8 SELNEC {South E_ast Lancashire North FEasl Cheshire) Transportation Study: 1963 peak

hour trave! times between Study Zones,  We wish 1o acknowledge the help of Michael Hummersione
of the Ministry of Transpoert Mathematical Advisory Unit in obtaining the data,
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travel time on velocity fields. In all three we restrict ourselves to travel time along
curved minimum routes, with no additional reference to the correction factor for
computing real travel time.  Further atterpts to construct urban velocity fields
and estimate travel time and correction factors will most likely improve these
methods,  If such methods prove reasonably sucecessful, they could provide a simple
and quick way of obtaining travel times -—-simple encugh to be used by drivers
and real estate agents worried about the time it takes to get from here to there, The
only requirements for the estimation ol travel time are a sample of velocities of
travel at different distances from the center, 4 simple program for constructing a
veloeity ficld, and a ximple program for measuring travel time on this velocity field.
The analytical procedure for calculating travel time on curved paths on a given
velocity field is presented in Section 2. A procedure for computing travel time,
using time surfuces as analogues is presented in Sectien 3. A graphical method
of estimating travel time with the use of a chronograph is presented in Section 4.

2. AN ANALYTICAL PROCEDURE FOR CALCULATING

TRAVEL TIME

Givenr a continuous, scalar, and radially symmetric velocity field ¥ — F(r),
we wish to caleulate travel Lime on a minimum route between any two points (r,, #,)
and (ry, #;) on the urban plane. This section sets the analytical framework lor
solving this problem. We have found it convenicnt to structure the discussion in
the form of definitions, theorems and proofs. A complete summary of the pro-
cedure is presented in a flow chart in Figure 5 An clement of distince oo the
plane s, in polar coordinates (r, #),

ds - &/ drvF et )]
An element of time can be expressed m the form
PR LA e vy 17
At = A V«/.{fr - ridyt . (2)

The travel time on a path r — #(#)} from (r,, ) to (rs, #3) is thus given by:

t(ri, 0, rs, 03) -Sﬁl I—\/ a’r‘_|_:; dd (3)
Iy Yl PO V93 ) - oy V (dﬂ) . -
The path between two points on the plane which can be traversed in the smallest
time is said to be the minimum path.

Theorem 1
A minimum path satisfics the ditferential equation

ﬂ LA '3

ag - kv YKV “)
where K is a constant associated with the path. The proof of this theorem appears
in Angel and Hyman [2]. The differential equation, when solved for a given V,

yields a second constant of integration. Both constants can be evaluated by re-
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quiring that the minimum path passes through the points (r;, #,) and (s, ). A
route is a directed minimum path between two points. The extension of a route
between two points is the union of all routes passing through the two points. K is
said to be the characteristic of a route, K is also the characteristic of the exten-
sion of a route.

Theorem 2

Two roufes have the same characteristic if and only if their extensions may
be transformed into each other by a rotation about the center.

Proof: If two toutes have the same characteristic X then, for each value of
the radius r, their extensions must have the same value for d0/dr by Equation (4).
So for cach radius the values of # for the two extensions must differ by a constant.
Thus one extension may be transformed into the other by a rotation about the center.
Conversely if such a transformation exists then for cach radius » the two extensions
must have the same valoe Tor rfk ¥V 4/ #* — KiV2.  lence they must have the same
characteristic X, and so the routes must have the same characteristics.  The mini-
mum radius, rain (K), of a route with characteristic X is the shortest distance from
the center of the city to the extension of the route. This is illustrated in Figure 3.

Note that rq(0) - 0.

FIGURE 3. The Minimum Radius of a Route

Thearem 3
For velocity fields V(r) with the properties that »/¥{r) is a monotonically
increasing function of r, and

, r
Irm;l “V(Ir_)- -0, (5)

The Equation
r— |KIV(r) (6)

has the unique solution, ro(K), for each characteristic X.
Proof:  Suppose K is the characteristic of a route which does not pass through
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the center.  The extension of this route must have a point of closest approach to
the center. At this point ¢r/df -~ 0. Solving Bquation (4) for K when drfdf — 0
vields
i r
K== v

and hence Equation (6) is sutisfied.  Thus £,..(K) is a solution to Equation (6).
Since r/V(r) increases monotonically with r this solution must be unique.  If’ the
route passes through the center it must have zero characteristic, by Tquation (5.
Thus Equation (6) will have only » — 0 as a solution.

The maximal characteristic, R(r., r;), is the positive characteristic of a route
whose minimum radius is the smallec of r, and r,. By Theorem 3 we have

(7)

R(r,ry — M0 Crs) 8

(ri, r2) Vmin (r, i ®)

The critical angle, 0(r,, ra), is the positive angular difference of a route between two

radii r, and r; with a4 maximal characteristic & (., r).  This is illustrated in Figure 4,
By Equation {(4) we have

FIGURE 4. The Maximal Characteristic and Critical Angle of Radii r, and r,

do KV
T TR ©)

Inicgrating this cxpression between the smaller and the larger radii gives us an

¥ The analylic procedure is restricted by the conditions of Theorem 3 to those velocily ficlds
which satisfy the conditions of the theorem, The requirement that rfV{r) be u monotonically
increasing lunction of r can be expressed in the form
Vooodv
T
This requirement is satisfied for the Greater Manchester velocity ficld and will probubly be met by
most forms of velocity fields computed in existing urban areas.

for O-rFr<ca,
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expression for d(ry, ra), where K — K(r.. #1),

r Vdr

vy r ‘\/r! - Ru(rlsr!)yz l
The angular difference, #,,, 15 the angle traversed by the route from an origin (v, )

to a destination (r., #5).
&, may he caleulated from the following expressions:

012 = ga - 0| for - "_: (}3 0| _'-': T ’
012 — 02 = 0] -2r for & < 03 P‘)| Tl r (l [J
013 = 03 e 01 } 2?f f{)l‘ —_ 2 -

(10)

O(ry, ry) = E(r,,r;,)s

#y5 is restricted 1o the range — 7 =y = om

A direct route is a route which does not pass through its minimum radius. A
through route is a route which passes through its minimum radius. Tt Tollows (hat
the route hetween two peints is a dircct route if and only if the absolute value of
their angular dilference is smaller than the critical angle corresponding to their
radii.

Define #r, K) to be the integral
. r KVir

or, K) — Srmh.mr_f ‘\/ r{ — K*V*

where we take the positive root.  Since r is always greater than ry,,(K), V>0
and r>> 0, # has the same sign as K. 1t can be verified that & is positive for coun-
terclockwise routes and negative for clockwise routes.  Clearly, fi(r, K is the angle
between the point nearcst to the center on a route with characteristic X and a point
on that route with a radial coordinate r. The angle #(r, K) is measured in the direc-
tion of the route, and #r, (K}, K] 0. Thus, for direct routes, we have

(12)

n KVdr
0=\ T whenn > (
and
1 KVdr
02 — SMW when r, > ry. (13b)
For through routes, we have
B — 0(r, K) |- 00, K. (13c)

These equations establish the relationships between the characteristic £ and the
given angular difference of the origin and destination. By solving the appropriate
equation we can compule the characteristic K of the route joining the two points.
Theorem 4

For travel time on a route with characteristic X we have

dt r

& VI =KV (14)
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Proof: From Equation (2) we obtain

)

dr V ) (15)
On a route with characteristic A we have

[/ KV . ©

dr  rar KW )

Substituting for df/dr in equation (15) we obtain, for travel time on a route with
characteristic K
dr ¢
dr VT KW
Define t(r, K) to be the integral
4 rdr
W K) - LS A 6
(r K) S\“miulxl v \/rl — K2 (l ))
where we take the positive root.  Since r is always greater than rmia(K), 1(r, KD
must be positive. The term f(r, K} is the minimum travel time from a point with
a radial coordinate rou(K) to a point with a radial coordinate r vn a youle with
characteristic k. Clearly, {[rmm(K). K] — 0. It can be casily verilicd that the mi-
nimum travel time between two points with radial coordinates ry and ry on a route
with characteristic K is given lor direct routes by

. 7y rdr .
t (r,rr,K]:§ o e for o <, (17a)
AF 1y 72 er'\/n"‘i—'[\‘V‘ 1 ]

and

fn(f'h Fa, K) — S ! lﬁ-—,ﬁ for o> r, (l?b)

and for through routes by
to(rr, res KY = t(ry, K) -+ Hrs, K) (17c)

The preceding discussion provides us with a well defined procedure for calculating
travel time belween two points along a minimum toute, in a given velocity (ield.
We summarize this procedure in Figure 5.

We illustrate the procedure described above with an cxample. We assume
that the central velocity in the city is zero and that the velocity then increases pro-
portionally to the distance 7 from the center. The velocity field thus takes the form

V=uwr. (18)

Given two points (ry, ;) and (ry, 7)., we want to compulte the travel time on a mini-
mum route between these points, First, observe that the given velocity ficld docs
not fulfil the condition of Theorem 3 since
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FIGURE 5. Procedure for Calculating Travel Time on Minimum Routes
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r 1
Vey - const (19
The minimum paths in this velocity field are spirals which cut cach radius at a con-
stant angle.* Since each path reaches the origin it does not possess a minimum
radius.  We therefore nced not calculate a maximal characteristic and a critical
angle, since there are no through routes.  We first compute the angular ditference
from Equations (11). Suppose r, < .. To obtain the characteristic K we must
solve equation (13a) for K. Substituting for V, we obtain
Ko "oy K
- _— P . . 20
\/1 - K S r \/1 - KA In (r_;;’r;) ( ()
To find an cxpression for the travel time we use the value of K {from the above equa-
tion to selve equation (17a), which takes the form

ap

1

o 1 _"ﬂdr_‘ 1 ,
Io(r, 1o K) = wy 1 — K’ Srl roawy = Kt In (rsfr) . @0

Substituting for K frem cquation (20), we obtain

{ry, ryy thy) = -{-]” S In (rafed] -E (22)

This completes the procedure.  In most velocity ficlds it will not be possible to
obtain an analytical expression for fravel time as a furction of the givea coordinates
and the parameters of the velocity field. 1n these cases there is 4 need to develop
computational methods for obtaining numerical values at each stage in the pro-
cedure.

3. THE TIME SURFACE METHOD

In our previous paper we have shown that if velocities form a continuous
scalar and radially symmetric field, it is possible to transform the urban plane into
a time surface. The time surface has the property that travel time between two
points on the plane is identical with the distance between the images of these points
on the time surface.  Given a velocity field, we can lorm its time surface and com-
pute travel time by measuring geodesics on that surfuce.  We shall describe the
transformation of the plane into a time surface, and compute travel time on the time
surface for an example.  An clement of distance on the planc is, in polar coordinates
(r., 0,

ds - Jdrr 4 rrdee Y
An clement of distance on the time surface is, in ¢ylindrical coordinates (p, z, ),
d.’ v ‘\/Apz + Azﬂ —|— .“2-_19!}2 (23)

and this is illustrated in Figure 6.

"4 This result .spp_c.l_rs in Angel and Hyman [2; p. 220].
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FIGURE 6. The Coordinate System (r, #) of the Urban Planc and the
Coordinate System (p, z, ) of the Time Surface

Theorem §
Let
6 — 1, (24)
o ; (25)
and
S AN AcH -
= S pa 2;-V(W) r (_d"r ) dr - C. (26)

For any given (), these equations define a transformation
Tv: (rnb)—(, ).

The term 7, maps travel times between points on the urban plane onto distances
on the time surface.  The proof of this theorem appears in Angel and Hyman {2;
p. 217] and is therefore omitted here. We illustrate the caleulation of travel time on
a time surface with a worked example.

Given the velocity ficld

V= wr?, 27
where

0=p <L,
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we wish to compute the travel time between two points (ry, #;) and (rs, ¢:).° We
first show that the time surface is a cone. By Liquation (25),

._L..._ r — l 1—p
'{]_V_wr”_(ur!' 28)
By Equation (26)
2o\ VT por P 4 C. 29)
Letling
c 0,
we then have
L N2pp Nl 0
T (e R ET A co

Thus z is proportional to g and the time surface is a cone,  The distance R from the
apex 1o any point on the ¢one can be evaluated from Equation (30) to yicld

o G1)

We can now open the cone along one of its generators to obtain a pic-shaped area.
The angle of opening of the pic-shaped area is 2x(l — p) as can be easily verified.
Through the transformation of the cone into a pic-shaped area the angle ¢ is trans-
formed into the angle « between two generators where

« — ¢(1 = p). (32)

Minimum paths on the pie-shaped area are straight lines, since the surface is a plane.
The time between two points on this surface, (R, ) and (R, a3), can be evaluated
by the cosine rule. Let ary be the angular dilference of the two points.  Then

IS(R” -Rh n’l‘.!) - RL; + Rg — 2R|R1| COS ¥y (33)

This is illusteated in Figure 7. Substituting for the R; values and oy, from Equa-
tions (31), (32), (24) and (25), we oblain an expression for travel time between the
two original points on the urban plane:

try, £2, 0ia) = \/r- P20 cos [(1— p)ful . (34)

Again, in many other velocity fields it would not be possible to compute an analytical

b This example is discussed by Wardrop [12]. Wardrop describes a method for calculating
minimum paths and isochrones using conformal transformations with complex variables. He
does nol deal explicitly with time surfaces, but his wnalysis is, in Tact, restricted to time surflaces which
are developable into a plane {cylinders and cones).  As we have shown in our previous paper, real
time surfaces exist for all velocity fields where

dV 2V

0 - _d_r_ =, for D r oo,



ANGEL AND HYMAN: URBAN TRAVEL TIME 97

FIGURE 7. Travel Time on the Conic Time Surlace

expression for travel time from the original coordinates. Tn some cases it may
be feasible to construct a three dimensional model of the time surface and to measure
distances hetween the imapes of points with a string,

4. A GRAPHICAL. METIIOD: THE CHRONOGRAPH

This procedure docs not involve complex computations as those described
in Section 2, nor does it make use of the time surfaces described mn Section 3. In-
stead, we use a peometrical construction, analogous to that described by Iluygens
[7] in 1678 to determinc the wave fronts of light.  We use this method to construct
a graph, the chronograph, which can be rotated about the center of the city to
provide measures of travel time between any two points with a large degree of ac-
curacy.

The chronograph for Greater Manchester was constructed by describing the
set of minimum paths which are orthogonal to a given radial. To construct a
minimum path from a given point on the radial we draw a circle of radius Virydi
about this point, where r is the distance of that point from the city center. All
points on this circle are 4¢ away from the original point. We now draw another
set of small circles (or ares) of radii F(r)dy, all centered on various points on the
first circle.  We then draw the envelope of these circles.  All points ont this envelope
are 24r away from the original point. The next set of circles is drawn about points
of this envelope. By a repeated application of this method, we obtain a set of
jsochrones at intervals 4¢ from the original point. The minimumn paths can now
be drawn by tracing a curve through the original point, orthogonal to the original
radial and to each of the isochrones. A sclected set of minimum paths, orthogonal
to this radial, is drawn by repeating this procedure for various points on the radial,
The time contours can now be drawn by connecting the points of intersection of
each minimum path with its appropriate isochrone ndt.  The time contour will then
describe the sct of points which are ndr away from the original radial.

We now have a completed chronograph.  The chronograph for Greater Man-
chester is presented in Figure 8. The time contours are drawn at two minute in
tervals from the original radial. This chronograph was drawn for the velocity ficld
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Vir) ~- 24.9 — 16.9¢775",

Tt has the property that the minimum paths orthogonal 1o the original radial reach
a limiting angle. This is reached by the path whose minimum radius is 0. 56 miles.
They then begin to straighten out again.  The minimum path into the city center
is thus a straight line orthogonal to the original radial. Travel time for trips on a
path which comes within (0. 56 miles from the center must therefore be measured on
the dotted lines in Figure 8,  To obtain readings of travel times between two points,
we rotate the chronograph about the center of the city until the two peints lie on
one minimum path, or in a band between two minimum paths.  We then simply
add or subtract the tines from the original radial to cach of the points to obtain the
correct travel time.

A chronograph drawn by hand in the above method was used in estimating
travel times on the Manchester velocity field which are presented in Figure 2. It

1T ] T T

o L 2 3 4 5
1 [ S
Miles

FIGURE 8. The Chronograph for Greater Manchester, 1965
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can be easily seen from Figure 2 that these estimates given a good fit to the SELNEC
estimates, although they arc all consistently Tower than those estimates as mentioned
above. Utilizing the procedure described in Section 2 it is possible to construct
a more accurate chronograph with the aid of the computer. The chrenograph
presented in Figurc 8 wus drawn in such a manner. A program was written {o
compute points along the minimum paths from the original radial and points of
intersection of these paths with the time contours,

We have no tool at present for estimating travel time in urban arcas, although
the question of, “How Tong will it take to get there?”’ confronts everyone daily.
Geographers and cartographers, although perfectly willing to commit themselves
to road distances and strect names, generally refram from compntting themselves
to travel time estimates.  The common reasoning is that times are so dependent
on congestion. But Lhen congestion seems to be here to stay and displays quite
regular characteristics.  ‘The problem is to obiain time estimates taking urban
congestion as a starling point.  The analytical procedure can be used for developing
transporiation models which do nol require a detailed description of the network.
The time surface can be applied to generalizing the methods of location theory,  The
chronograph can be used by anybody to abtain rapid and reliable estimates of travel
time in an urban urea.
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